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1 Introduction

A recent result identified a sufficient statistic for monetary shocks: the cumulative response of

output to a once-and-for-all monetary shock is proportional to the ratio of the kurtosis of the

steady-state distribution of price changes over the frequency of price changes. The result was

established in Alvarez, Le Bihan, and Lippi (2016) for the sticky price model of Nakamura and

Steinsson (2010), that nests as special cases two workhorse of macroeconomics: Calvo (1983) and

Golosov and Lucas (2007). The result was extended by Alvarez, Lippi, and Oskolkov (2022) to a

broader class of state-dependent models using the generalized hazard function setup of Caballero

and Engel (1993, 1999). Alvarez, Lippi, and Paciello (2016) showed the same sufficient statistic to

hold in models where firms follow time-dependent rules as in Reis (2006). Recent results by Baley

and Blanco (2021) seek sufficient statistics for setups with a non-negligible drift. This extension

is useful for applications to investment problems or to economies with high inflation. Given the

multitude of theoretical setups that produce this prediction, Leahy (2016) considered the empirical

test of the sufficient-statistic proposition a priority for this research program.1 This paper takes

up that challenge and presents a test of the sufficient-statistic proposition for monetary shocks in

a low inflation environment.

We begin by extending the theoretical framework, developed for once-and-for-all permanent

shock, to accommodate shocks with a predictable transitory component. Such an extension is

important to map the model to the data, where nominal interest rate shocks are typically mean

reverting. It is also, per se, an original contribution of the present paper. We handle this problem

using the mean-field-game setup developed by Alvarez, Lippi, and Souganidis (2022). The analyt-

ical solution method revolves around a linearization, along the lines explored by Boppart, Krusell,

and Mitman (2018) in numerical work to study MIT shocks. The results show that the sufficient

statistic proposition remains informative about monetary non-neutrality even in the presence of

mean-reverting shocks. We then test the sufficient-statistic predictions using micro data for a

large number of firms, representative of the French economy, underlying the producer price indices

(PPI) and the consumer price indices (CPI). The test is made of three steps. We first estimate

1He wrote:“I would not expect this equation to fit the data perfectly, but it would be very nice to know if these
statistics are at all informative” (page 462 of Leahy (2016)).
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the sectoral responses to a monetary shock for about 120 PPI industries and 220 CPI categories,

using a Factor Augmented VAR in the vein of Bernanke, Boivin, and Eliasz (2005) and Boivin,

Giannoni, and Mihov (2009). We summarize the extent of the non-neutrality using the cumulative

impulse response of the sectoral prices (CIRP ). As the sufficient statistic proposition concerns the

cumulated response of output, we use the theory to derive the testable implications for the cumu-

lated response of prices. This allows us to increase the number of cross-sectoral observations, since

output data are scarce relative to pricing data, and to map the theoretical prediction into a metric

that is more robust.2 The second step consists in using the micro data underlying the sectoral

data to measure the cross sectional moments of the distribution of price changes in the different

sectors. In the third step, we inspect the relationship between the CIRP and the cross-sectoral

moments under the restrictions implied by the theory.

The results consistently show that the data do not reject the predictions of the theory across

a variety of tests, specifications, and robustness exercises. Both the frequency and the kurtosis

appear as statistically significant factors in accounting for the cross-sectional heterogeneity of the

estimated CIRP for both the PPI data as well for the CPI data. The sign and magnitudes of the

estimated coefficients are consistent with the predictions of the theory in the specification where

the variables enter the regression as a ratio, as the theory prescribes, as well as in an unrestricted

specification where both variables are entered as separate regressors. Moreover, “placebo” tests

show that moments not suggested by the theory, such as the size, standard deviation and skewness

of price changes, are not correlated with the CIRP . In addition, the results are robust to allowing

in various ways for measurement errors, an important concern when micro price data are used.

When we compare results for PPI and CPI products, we find that the results for PPI are more

robust than the results for CPI products. In the robustness analysis, we find that when removing

products with frequent sales and substitutions (in particular, food, clothing and furniture), the CPI

results align more closely with the ones obtained for PPI products. This is consistent with the fact

that the model underlying the sufficient statistic result assumes no seasonal sales. It should not

be surprising that, given the simplicity of the model and the many measurement issues involved,

the variables suggested by the theory explain only a fraction of the cross sectional differences in

2The output response depends on sector specific elasticities that require additional information for the test.
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the non-neutrality. But it is noticeable that, across of broad range of specifications, both kurtosis

and frequency are related to non-neutrality in a way that is aligned with theory and that both

variables are statistically significant.

At a high level, this paper relates to the voluminous applied literature that analyzes the impli-

cations of price-setting patterns, in particular cross sectoral heterogeneity, for the propagation of

shocks.3 The specific novelty of this paper is to test the sufficient-statistic proposition for monetary

shocks, using the restrictions implied by the theoretical model. The theory guides our empirical

analysis: it identifies the variables of interest, how they enter the test, and shows how to interpret

sign and magnitude of the estimated coefficients. Previous studies highlighted the importance of

the frequency of price changes as a factor behind the cross-sectoral response to an aggregate shock,

e.g. Nakamura and Steinsson (2010); Gorodnichenko and Weber (2016); La’O and Tahbaz-Salehi

(2020). The sufficient statistic proposition that we analyze supplements the predictions for the role

of frequency with a prediction for the role of kurtosis, which indeed our data confirm to be relevant.

A related analysis is developed by Hong et al. (2020), who inspect the correlation between the re-

sponse of sectoral producer price indices in the United States and several cross-sectional moments

of the distribution of price changes. The authors’ aim is to develop a broad empirical investigation

on the determinants of sectoral responses to monetary policy shocks, without focusing on a specific

theory behind the empirical analysis. The lack of a tight link between the theory and the empirics

prevents such results from providing a rigorous test of the sufficient statistic proposition.

The paper is organized as follows. Section 2 recalls the sufficient-statistic result and extends it

to mean-reverting monetary shocks with a predictable component. Section 3 derives the theoretical

restrictions to be tested on the data. Section 4 uses micro and sectoral data to measure the key

ingredients needed to test the theory: (i) the sectoral response of prices and output to monetary

shocks (ii) candidate sufficient statistics, i.e. several cross-sectoral micro moments. Section 5

presents the baseline results of the test using cross sectional data. Section 6 investigates the

robustness of our findings using a number of alternative measures and specifications. Section 7

3See, e.g., Bils and Klenow (2004); Burstein, Eichenbaum, and Rebelo (2005); Carvalho (2006); Bouakez, Cardia,
and Ruge-Murcia (2009); Imbs, Jondeau, and Pelgrin (2011); Cavallo and Rigobon (2016); Cavallo (2018, 2019);
Amiti, Itskhoki, and Konings (2019); Bonomo, Carvalho, Kryvtsov, Ribon, and Rigato (2020); Carvalho, Lee, and
Park (2021); Dedola, Kristøffersen, and Züllig (2021); Auer, Burstein, and Lein (2021).
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concludes and discusses avenues for future research.

2 A sufficient statistic for monetary shocks

This section reviews the sufficient-statistic result for monetary shocks in an economy with sticky

prices. Section 2.1 summarizes the sufficient-statistic result on the propagation of a permanent

monetary shock. Section 2.2 provides more details on the foundations of the sticky-price model and

extends the setup to accommodate shocks with a predictable transitory component. The extension

is important for the empirical application using actual monetary shocks, such as mean reverting

interest rate shocks. We solve for the economy’s response to such dynamical shocks, and show that

while the sufficient-statistic result does not hold exactly in such cases, the result remains close to

the benchmark case of the permanent shock, so that the sufficient-statistic remains informative.

2.1 The Sufficient Statistic Result

Consider a firm’s i (log) markup in industry j = 1, . . . , n, defined as the price over the unit labor

cost: µij(t) ≡ log
Pij(t)

W (t)Zji(t)
, where Pij(t) is the price of firm i in industry j, W (t) denotes the

aggregate nominal wage and 1/Zij(t) is the firm’s i labor productivity. Assume the firm faces a

demand with constant elasticity, and let µj be the time-invariant optimal markup. Define the

“markup-gap” for firm i in industry j as

gij(t) ≡ µij(t)− µj = xij(t)−W(t) where xij(t) ≡ log
Pij(t)

W̄Zij(t)
− µj and W(t) ≡ log

W (t)

W̄
(1)

Assume that logZij follows a driftless diffusion, so that each firm is hit by idiosyncratic shocks

dxij = σdBij where each Bij is a standardized Brownian motion, independent across i and j. The

presence of sticky prices, and the stochastic productivity shocks, imply that the firm markup will

not be equal to µj at every moment. We assume the initial conditions are such
∫

logZij(t)di = 0

for all industry j. The steady state nominal wage is given by W̄ , and W(t) denotes the deviations

from the steady state that follow an aggregate shock.

In the sticky price (CalvoPlus) economy the aggregate output of industry j, in deviation from
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steady state, is proportional to the cross-section mean of the price gaps. Resorting to equation (1)

we have

Yj(t) ≡ −
1

εj

∫
gij(t)di =

1

εj

(
W(t)−

∫
xij(t)di

)
(2)

where εj is the industry-specific income elasticity – further discussed in Section 2.2– which depends

on the “demand side” of the economy, i.e. it is independent of the firm price setting decisions.

Define the industry j aggregate price pj(t) ≡
∫

logPij(t)di, with steady state value p̄j = µj+log W̄ ,

we have:4

pj(t) = −εjYj(t) + logW (t) =

∫
xij(t)di+ log W̄ (3)

Note that pj(t) is determined by W (t) and {xij(t)}, and that it does not depend on εj.

A permanent monetary shock. We consider an economy in steady state with an invariant

distribution of price gaps x, and analyze the effect of an unexpected once-and-for-all monetary

shock of size δ > 0. The shock immediately (and permanently) raises the nominal wage W̄ , so

that all firms’ markups fall by δ (log points). Note that in this caseW(t) ≡ 0. The shock triggers a

dynamic response of output, following equation (2). Let the cumulative impulse response (CIRYj)

of output be:

CIRYj(δ) =

∫ ∞
0

Yj(t; δ) dt (4)

where Yj(t; δ) is the aggregate output t periods after the shock δ, measured in deviation from the

steady state output. The variable CIRYj is a convenient statistic that summarizes with a single

number the overall impact of the monetary shock on industry j.

The sufficient-statistic result establishes that the cumulated output response following a small

nominal shock δ is

CIRYj (δ) =
δ

εj

Kurtj
6Freqj

+ o(δ2). (5)

The result states that the cumulated output response to a monetary shock is accurately ap-

4Note pj is the first order approximation of the ideal index: logPj(t) = 1
1−ηj

∫
Pij(t)

1−ηjdi ≈
∫

logPij(t)di.
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proximated by the ratio of the kurtosis of the size distribution of price changes (Kurtj) to the

frequency of price changes Freqj. The approximation is accurate up to second order terms. The

result in equation (5) is striking. It holds in a large class of inherently different models, from time

dependent models a la Calvo, to canonical menu-cost models a la Golosov-Lucas, intermediate

cases such as the Calvo-Plus by Nakamura and Steinsson (2010) or inherently random-menu cost

models such as those of Caballero and Engel (1993, 1999).

The effect of the frequency is well understood: a higher mean frequency of adjustment implies

that adjustment is faster and hence the economy is more flexible (a smaller output effect). The

effect of kurtosis is more subtle: it indicates that two industries with the same frequency can have

substantially different flexibility. Kurtosis captures the fact that in an economy with heterogeneous

agents the response to an aggregate shock depends on the shape of the cross sectional distribution

of these agents, a fact emphasized in several papers by Caballero and Engel. Consider for an

instance an economy where price setting is staggered every T periods, a la Taylor, and one where

price setting is follows a Calvo rule with an average duration equal to T . These economies have the

same frequency of price changes but the Calvo economy features a tail of “late adjusters”, firms

that even long after T periods have not adjusted their price following the shock. Such an effect

is captured by the kurtosis of the size of price changes, even in models where a time-dependent

rule is followed as in Carvalho and Schwartzman (2015); Alvarez, Lippi, and Paciello (2016).

Intuitively, kurtosis summarizes the degree of cross sectional heterogeneity in the timing and size

of price setting behavior. Equation (5) proves that this feature is important for the propagation

of monetary shocks.

Key Assumptions and Limitations of the Sufficient Statistic Result. Three assumptions

are key for equation (5) to hold. The first one is that the model has no inflation, so that several

model objects display symmetry properties. While the assumption of zero inflation might seem

restrictive, we argue that it provides a good approximation to models where inflation is low. The

second key assumption is that upon adjustment the firm completely closes the price gap, i.e. that x

is reset to zero. This assumption is violated in models with high inflation, or in models with “price

plans” or “sales”, such as in Eichenbaum, Jaimovich, and Rebelo (2011). In such cases equation (5)
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is not a good summary of the impulse response and other methods can be used to approximate

CIRY . A third assumption is that x follows a Brownian motion. This allows us to use stochastic

calculus to analytically characterize the firm’s optimal policy and the associated cross sectional

distribution of desired adjustments. In a model with leptokurtic shocks, such as Midrigan (2011),

one cannot prove that kurtosis and frequency are enough to summarize the CIRY . However, for

moderate deviations from the Brownian benchmark, consistent with the data on the distribution

of firms’ nominal shocks, the formula continues to provide a useful benchmark (see Section 5 in

Alvarez, Le Bihan, and Lippi (2016) and the numerical results in Gautier and Le Bihan (2022)).

We compute impulse responses by perturbing the stationary state of the model. Hence, what

we compute is the “expected impulse response”, i.e. averaging the initial conditions, each of which

is an entire distribution. Our setup could be used to study impulse responses where the initial

condition is not the stationary distribution. This has been done in other models such as the

empirical analysis by Caballero, Engel, and Haltiwanger (1997) in the context of employment,

and the theoretical characterization for a price-setting model by Caplin and Leahy (1997). In our

context such analyses would require more extensive data, to fit the CIR at different aggregate

states of the economy, as well as new theoretical results to characterize the state-dependent CIR.

2.2 A model with predictable transitory shocks

This section describes the foundations of the model and introduces monetary shocks with a pre-

dictable transitory component. These shocks amount to a perturbation of the entire dynamic path

of the aggregate nominal costs. The goal is to explore the robustness of the sufficient statistic

result beyond the case of the once-and-for-all shock. While our interpretation will be in terms of a

monetary shock with a persistent component, an equivalent interpretation can be given in terms

of sticky wages, gradually changing through time.

7



2.2.1 The household side, wages, money and interest rates.

The representative household preferences in the Golosov and Lucas (2007) model, augmented to

have n industries, are:

∫ ∞
0

e−ρt

[
n∑
j=1

cj(t)
1−εj

1− εj
− αL(t) + log

(
M(t)

P (t)

)]
dt and cj(t) =

[∫ j

0

A
1
ηj

ij cij(t)
1− 1

ηj

]1− 1
ηj

(6)

where cj(t) is a CES aggregate across the varieties sold by the firms in industry j, L(t) is labor

at time t and M(t) nominal money holdings. The household problem has the following first order

conditions: e−ρtα = λQ(t)W (t), e−ρt 1
M(t)

= λQ(t)R(t), and e−ρtcj(t)
−εj = λQ(t)Pj(t), where

W (t) is the nominal wage, Pj(t) the (ideal) nominal price of the industry j goods, α > 0 a labor

disutility parameter, R(t) the nominal interest rate, λ the Lagrange mutliplier of the consumer’s

budget constraint and Q(t) ≡ e−
∫ t
0 R(s)ds is the price of the time t nominal bond.5

From these conditions, we obtain that Yj(t) = log cj(t) − log c̄j = 1
εj

[
log W (t)

Pj(t)
+ µj

]
where we

use that output is demand determined. Continuing with the analysis of the first order conditions

shows that the steady state interest rate is R̄ = ρ + Ṁ
M

, so that R̄ = ρ if the steady state money

stock is constant. Moreover we have that αM(t)R(t) = W (t) showing that shocks to the money

supply or the interest rate immediately map into nominal wages. Using the definition of Q(t) we

have W (t) = α
λ
e
∫ t
0 (R(s)−ρ)ds or W (t) = W (0) e

∫ t
0 (R(s)−R̄)ds. Letting W̄ = limt→∞W (t) be the new

(after the shock) steady-state wage we write

W(t) ≡ log
W (t)

W̄
= −

∫ ∞
t

(
R(s)− R̄

)
ds (7)

Equation (7) shows that a transitory deviation of the interest rate from the steady-state implies a

time varying path of nominal wages. The often studied once-and-for-all shock to the money supply

amounts to a shock that immediately triggers a new steady state level of the nominal wage, W̄ ,

with no effects on the path of the interest rate (R(s) = R̄ for all s). In general a monetary shock is

made of two independent components: the permanent effect on nominal wages, and the transitory

5The budget constraint is M(0) +
∫∞

0
Q(t)

(
τ(t) +W (t)L(t)−R(t)M(t)−

∫ 1

0

∑n
j=1 pjicjidi

)
dt, where τ is a

lump sum transfer. See Appendix B in Alvarez and Lippi (2014) for a detailed analysis of this model.
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wage deviations due to the nominal rate changes.6

2.2.2 The firm’s price setting problem and aggregate shocks

We consider a second-order approximation of the firm’s profit function around the optimal price,

so that the firm’s period cost is given by

F (x,W(t)) ≡ Bj

(
x(t)−W(t)

)2

(8)

where Bj > 0 is related to the curvature of the profit function for a firm in industry j.

To adjust its price and control the markup the firm must pay the fixed menu cost ψj. Alterna-

tively, with a rate ζj per unit of time, the firm can adjust the price at no cost (a free adjustment

opportunity a la Calvo). This price setting technology, akin to the Calvo-plus model of Nakamura

and Steinsson (2010), allows us to span a large class of sticky price models in between the canonical

menu-cost model and the Calvo model.7

The firm solves the following stopping-time problem

min
τi,x∗i

E
[∫ ∞

0

e−ρtBj

(
x(t)−W(t)

)2

dt

]
+
∞∑
i=1

e−ρτi I(τi) ψj (9)

where ρ > 0 is a discount rate, τi a price-reset time, and the indicator function I(τi) = 0 if the

stopping time is due to a free-adjustment opportunity. Intuitively, the firm’s problem is to control

x(t) to track W(t). The time invariant parameters Bj, ζj, ψj and σ2
j depend on the industry

j. Absent aggregate shocks, i.e. W = 0, each firm’s gap is affected only by the idiosyncratic

productivity shocks. The firm’s steady-state policy in industry j consists of a region where control

is not exercised if x ∈ [xj, x̄j]; outside of this region control is exercised and the state is reset to

x∗j . Since the state is driftless the symmetry of the problem implies that xj = −x̄j and x∗j = 0, i.e.

it is optimal for firms to “close the price gap” upon adjustment.

We note that the Calvo-plus setup adopted here allows us to nest a large class of sticky price

6The nominal rate changes correspond to a path of money growth, easy to compute given the above equations.
7This basic setup, allowing for a random menu cost, can be made more general using a generalized hazard

function as in Caballero and Engel (1999, 2007), see Alvarez, Lippi, and Oskolkov (2022) for an extensive analysis
of this case.
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models in between the canonical menu-cost model and the Calvo model. These models are indexed

by a single parameter, the “Calvoness index” `j ≡
√

2ζj
σ2
j /x̄

2
j
, namely the ratio between the number

of free adjustments (ζj), and the number of adjustments that occur in a canonical menu cost

model (σ2
j/x̄

2
j). If `j → 0 then the model corresponds to the canonical menu cost problem, while

`j →∞ gives the Calvo model. Both the frequency of price adjustment and the kurtosis depend on

Calvoness index. In particular, the kurtosis of the size distribution of price changes is an increasing

function of `j only, ranging between Kurt = 1 for `j = 0 to Kurt→ 6 as `j →∞.

Modeling aggregate shocks. The class of models we consider posits that monetary shocks

affect the firm’s marginal costs. In these models nominal wages and the money supply are pro-

portional to each other, so that a positive monetary shock δ > 0 increases the marginal cost of all

firms. If the shock is permanent, it permanently increases W̄ , reducing the markup gaps x of all

firms by −δ, see equation (1). At this new level of the money supply, firms charge prices/markups

that are too low, thus the output level increases (this is the impact effect). Over time prices will

permanently adjust up and output will return to the steady-state level.

In the traditional analysis focusing on permanent monetary shocks,W(t) = 0 for all t > 0 since

the firm’s nominal cost jumps up at time zero and remains constant afterwards. In this case the

firm’s decision rules are unaffected by the aggregate shock (see proposition 7 in Alvarez and Lippi

(2014)) and upon adjustment firms “close the gap”. Instead, when the shock involves a whole path

W(t), the firm’s decisions are given by three time paths: xj(t), x̄j(t) and x∗j(t) for each industry

j. These are not stochastic processes, just functions of time. We show next that a time-varying

path for W(t) arises after a transitory shock to the interest rate, as often considered in monetary

analyses. In this case the optimal pricing policy at time t is represented by the interval (xj(t), x̄j(t))

so that if x(t) is in this interval the firm in industry j does not exercise control, i.e. inaction is

optimal. Instead, if x(t) /∈ (xj(t), x̄j(t)), the firm immediately changes its price from x(t−) to

x(t+) = x∗j(t). The optimal policy x∗j(t) depends on the future path of W(s), for s > t, and hence

the optimal policy upon adjustment is in general different from “closing the gap” (x∗j(t) = 0).

10



The monetary shock and mapping to the data. To summarize, we consider a monetary

shock made of two independent components: a permanent increase of the steady state nominal

wages, which we assume equal to δ, and the transitory component given by W(t) = δω(t). Below

we will focus on the exponential function ω(t) ≡ w0e
−γt to parametrize the initial size of the

interest rate shock (through ω0 and equation (7)) and its persistence 1/γ. Note that W(0) =

δω0 = −
∫∞

0
(R(s) − R̄)ds. If R(t) ≡ R̄ + δR̂0e

−γt, then a given R̂0 implies that ω0 = −R̂0/γ. For

instance, a 1% increase in the long run nominal wage corresponds to δ = 0.01. To supplement this

shock with a 25 basis points reduction of the interest rate with a half life of 1 year we set R̂0 = −1/4

and γ = 0.69, which implies ω0 = 0.36. The left panel of Figure 1 shows an example of a mean

reverting interest rate shock, starting with an “expansionary” reduction of the interest rate (equal

to 25 basis points) and an exponential decay with a half life of 1 year. The panel also shows the

corresponding sequence for w(t). The right panel shows the corresponding response of aggregate

prices.

2.2.3 The CIR with a predictable transitory shock

To simplify the notation of this section, we set εj = 1 and also omit the industry subindex j. We

let CIRY
0 denote the case where the shock consists solely of the permanent component δ, obtained

when the W(t) = 0 for all t. We let CIRY denote the cumulative output defined in equation (4)

for the case allowing for both the permanent and the transitory shock. We show in Appendix A.3

how to solve the impulse response for the general case in which W(t) 6= 0, and use the results

to establish the following proposition, for a shock with a transitory component W(t) = δ ω0e
−γt

where γ parametrizes the half life of the shock and ω0 its impact effect on the interest rate. We

have the following result:

Proposition 1. Consider ρ → 0 and a transitory shock W(t) = δ ω0e
−γt. Let σ̃ ≡ σ2/2 and
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` ≡
√

2ζ
σ2/x̄2 . The Cumulative impulse response of output is given by

CIRY = CIRY
o (10)

+
ω0

γ

{
γ/σ̃

(`2 + γ/σ̃)
+

`2

(1− e`)2

[(
e2` + 1

) csch(
√
`2 + γ/σ̃)√

`2 + γ/σ̃
−
(
2e`
) coth(

√
`2 + γ/σ̃)√

`2 + γ/σ̃

]}

The proposition allows us to explore the robustness of the sufficient statistic result in equa-

tion (5). It identifies the key determinants of the deviation from the benchmark analysis of the

permanent shock: the degree of Calvoness of the model (`), the persistence of the shock (γ/σ̃),

and the size of the shock on impact ω0. Figure 2 illustrates some results to quantify the deviation

from the benchmark result with respect to the half life of the shock. The left panel of the figure

considers a “small shock” similar to the one described in Figure 1 where the interest rate decreases

by 25bp on impact.

The vertical axis reports the ratio CIRY /CIRY
0 , namely the ratio of the CIR with the transitory

shock relative to the CIR without it. This ratio is 1 if the shock’s half life is zero, since in this case

there is only the permanent component and there is no deviation between CIRY and CIRY
0 . The

ratio also converges to 1 as the shock becomes infinitely persistent (i.e. the transitory component

vanishes). The biggest deviations occur for shocks with a half-life of about 1 year (about half the

frequency of the price changes, which is set equal to 2 per year in the figure). Even so the maximal

deviation is rather limited, below 10% of the prediction of the CIR for the case of the permanent

shock. The different curves in the figure refer to different degrees of Calvoness. It appears that the

largest deviations occur for the pure menu cost model (kurtosis equal 1), and that the deviations

are smaller as the model gets closer to the Calvo model (high kurtosis).

Overall, these deviations are small, in view of the fact that equation (5) predicts deviations of

the effects of monetary shocks that are in the range of 600% (as kurtosis varies from 1 to 6). In

particular, for intermediate values of kurtosis as measured in the data (around 3, see Section 4.2

and Table 1 in this paper), the maximum value of the deviations is about 3%. Overall, we find that

result reassuring about the informativeness of the sufficient statistic result, even in the presence of
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transitory shocks.

3 An Empirical Test for the Sufficient Statistic Result

This section uses the predictions developed above to derive an empirical test of the theory. We will

consider an economy made of several sectors, indexed by j, assuming that firms within a sector

are similar, i.e. that they have the same response to a common monetary shock. The thought

experiment is to hit this economy with an aggregate monetary shock, and to use the variation in

the responses observed across the sectors to test the theory.

The multi-sector set-up outlined above allows us to consider sectors that differ in the variability

of the idiosyncratic shocks (σj), as well as in the pricing frictions (ψj). Equation (5) suggests

testing the theory using a linear empirical relation between the product-level CIR of output over

a long horizon, and the observed product-level ratios of kurtosis to the frequency of price changes.

However, highly disaggregated sectoral output or real consumption series (at a monthly frequency)

that match exactly the level of disaggregation and high frequency of observations typical of price

data, are usually not available. In particular, in the case of France, there are no available monthly

consumption volume data available at the same level of disaggregation as the CPI (we conjecture

the same holds for other countries). We thus rely in the following on the cumulated impulse

response of prices rather than output. One advantage of this strategy is also that both the micro

and sectoral sets of variables derive from the same source of micro prices, ensuring consistency.

To obtain this alternative test, let us derive the relation between the cumulated response

of output in sector j at horizon T , CIR
Yj
T , and the one of the price level at the horizon T ,

CIR
Pj
T ≡

∫ T
0
P j(t)dt, following a monetary shock of size δ. To ligthen up notation we assume a

permanent shock so that log W̄ = δ and W(t) = 0 for all t. Using equation (3) and equation (4)

we have

CIR
Yj
T ≡

∫ T

0

Yj(t)dt =
1

εj

∫ T

0

(
δ − P j(t)

)
dt =

1

εj

(
δT − CIRPj

T

)
(11)

where δ
εj
T is the cumulated change in nominal output following a permanent increase in money.8

8Note that when T tends to infinity, as the CIR of output is finite, the CIR of prices diverges. This is an expected
property as the price level is permanently higher (or lower).

13



Replacing CIR
Yj
T by its value in equation (5) we have the following prediction relating the cumu-

lated response of prices and the ratio of the price change distribution for a large T :

CIR
Pj
T ≈ δT − δ

6

Kurtj
Freqj

(12)

where the approximation is due to the fact that the theory is based on a second order approximation

and that our measurement will use a finite horizon (T <∞).

From this equation, we derive an empirical linear specification linking the product-level CIRs of

prices to a monetary shock and the observed product-level ratios of kurtosis over frequency of price

changes (in levels). One advantage of this specification (using CIR of prices instead CIR of output)

is that the predictions for prices are independent of the sectoral elasticity εj, which simplifies how

the regression coefficient should be interpreted. This provides an additional motivation for focusing

on the response of prices rather than output. We will thus estimate, as a baseline, the following

linear regression:

CIR
Pj
T = α + β

(
Kurtj
Freqj

)
+ νj (13)

where β = −δ/6 is the theory-implied value of the regression coefficients and νj is the regression’s

error term. In our empirical exercises, we have normalized our measure of the monetary policy

shock so that δ = −1%, leading, under a strict interpretation of the model, to the prediction that

β = 1/6. We refer to this regression as the baseline regression, or as a “constrained regression”,

since the specification imposes that kurtosis and frequency enter the regression as a ratio.9

We can further decompose equation (12) to investigate the restriction imposed by the theory on

how kurtosis and frequency relate to the CIR. For that, we rely on a first-order Taylor expansion

around the sample means F̄ , K̄, and we get: CIR
Pj
T ≈ CIRP̄T − δ

6
K̄
F̄

Kurtj
K̄

+ δ
6
K̄
F̄

Freqj
F̄

. From this

expression we derive an unconstrained version of the empirical test:

CIR
Pj
T = β0 + βk

(
Kurtj
K̄

)
+ βf

(
Freqj
F̄

)
+ νj (14)

9An interesting property of the specification in equation (13) is that, for some type of measurement errors
(namely a fraction of price changes being spurious changes, of a small size), the induced multiplicative bias on
measured kurtosis and frequency is identical, so these biases do cancel. In other terms the specification is correct
even though both kurtosis and frequency are measured with errors. See Supplementary Appendix for details.
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The theory suggests that βk = −βf , i.e. the slope coefficients of the regressors
Kurtj
K̄

and
Freqj
F̄

are

expected to have opposite signs and to be equal in absolute value.

4 Measuring Monetary Shocks and Sectoral Moments

This section discusses the data used in the analysis, and the construction of the empirical statistics

needed to test the sufficient statistic result. We use variations across products to test the theory.

We rely on the existing cross-product variability in the price adjustment statistics, and on the fact

that equation (13) is expected to hold across different sectors.10 We need to estimate two types of

statistics: (i) the cumulative impulse response of prices (CIRP ) computed at the sectoral level, and

(ii) the moments of the distribution of price changes for the corresponding products. Section 4.1

and Section 4.2, respectively, present our approach and results in computing those statistics.

Before providing more details on the construction of the objects underlying our test, we stress

two important features of our empirical approach. First, we make use of a cross section of moments

computed from two micro data sets of prices in France: a first one covering consumer prices and

the other one producer prices. Both data sets are relevant for our purpose, and each has distinctive

advantages. Consumer prices are observed directly and somewhat less prone to measurement issues

(since they can be directly observed in outlets), offer a broader coverage of the economy (goods and

services vs. only goods for PPI products) and consumer inflation is used for the definition of the

monetary policy target. Producer price data are conceptually closer to the firms’ pricing problem

studied in standard macro models, and are not affected by sales and temporary promotions.

The second feature is that we identify the monetary shocks by imposing that they have the

properties highlighted by the theory (in the spirit of the “sign restriction” approach). In particular,

we want a (contractionary) shock to decrease output in the short run, to have a permanent negative

effect on the price level, and to have no long-run effect on output. These characteristics are

consistent with the theoretical model described above, and are thus desirable to perform a test of

the sufficient statistic result. Note that in principle any common shock to the marginal cost of

10In the paper we use indifferently the terms “sectors” and “products”. For PPI, product and sector classifications
fully overlap, whereas for CPI, we will use product specific price indices.
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firms could be used to test the theory. Oil price shocks would for instance qualify, but empirically

the sectoral dynamics following such a shock is strongly heterogeneous making it hardly useable

for a test in a finite sample. On the contrary, an aggregate monetary shock has the desirable

features that it will eventually move all nominal prices by the same amount, leaving relative prices

unaltered. We exploit this homogeneity property in our long-run identification of the monetary

shock. Finally, we stress that another feature of our approach is that the construction of the CIRP

variables does not use the micro data nor the sectoral moments, so there is no reason to expect

any bias in favor (or against) the sufficient statistic result.

4.1 Measuring the Sectoral Response to a Monetary Shock

To estimate the CIRP for a large number of sectors we employ a Factor Augmented VAR (FAVAR),

a method developed by Bernanke, Boivin, and Eliasz (2005) and Boivin, Giannoni, and Mihov

(2009). We closely follow the approach of Boivin, Giannoni, and Mihov (2009) as they focus on

the response of sectoral inflation rates to monetary policy shocks. A brief description is as follows:

the FAVAR is a model in which the dynamics of a large number of time series is governed by the

evolution of a small number of factors, that are typically – but not necessarily – unobserved and

follow a VAR process (see Appendix B for a more detailed description of the FAVAR model).

Formally, the vector of a large number n of time series Xt, called informational time series, are

related to the factors Ft by the following equation: Xt = ΛFt+et, where Ft is a vector of dimensions

K+M of respectively unobserved and observed factors, and et is a vector n x 1 of error terms with

zero mean. Following Boivin, Giannoni, and Mihov (2009) we allow one factor, the interest rate it,

to be observed, so Ft ≡ [F̃t it]
′ where the unobservable factors F̃t are to be estimated. Notice that

the observable factors and the informative time series are two distinct objects that do not have

any time series in common. The factors follow a VAR process: Ft = Φ(L)Ft−1 + vt where Φ(L) is

a lag polynomial of finite order and vt is an error term with zero mean and covariance matrix Q.

We are interested in estimating the response of the disaggregated time series of prices (PPI and

CPI) after a monetary shock; in our analysis an exogenous shock to the 3-month Euribor. In a first

step, factors are computed from a Principal Component Analysis using the informative time series.
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We include three types of “informative time series” in vector Xt (see Appendix B for details): (i)

macroeconomic data for France (ii) financial and monetary variables relevant for the euro area

(iii) disaggregated series of industrial production indices (IPI), producer price indices (PPI) and

consumer price indices (CPI), for France (seasonally adjusted and taken in log differences). In

addition, our analysis uses the 3-month Euribor as a measure of the monetary policy variable. This

variable is treated as an observable factor, and we filter it following motivations and a procedure

that are detailed below. Data are monthly and the sample period is Jan. 2005 to Dec. 2019. From

this first step, we extract five principal factors (those with the largest contributions to the overall

variance) and we then estimate a VAR model with 12 lags for the 5 factors and the interest rate.

From this VAR, we can retrieve the impulse response function (IRF) of all sectoral prices to an

aggregate shock. The dynamics of inflation in sector j will, in our FAVAR set-up, governed by:

πjt = λjFt + ejt (15)

where λj is a vector of loadings, recovered as the relevant row of matrix Λ. From these sectoral

IRF, the CIR
Pj
T is calculated as the cumulated response of sectoral price levels over a large number

of periods (see next section for a discussion).

Identifying Monetary Policy Shocks and the Price Responses. To identify a contrac-

tionary monetary shock in our FAVAR model, we use a Cholesky decomposition of the variance-

covariance matrix of the VAR innovations. Following a standard timing restriction, the Euribor

is ordered as a last variable in the VAR. Notice that, imposing a Cholesky decomposition in this

setup does not imply that the IRFs of informative time series cannot respond simultaneously to

the monetary shock.

We consider several alternative approaches in identifying monetary policy shocks. In our base-

line approach, we impose a “long run neutrality” restriction. Specifically, it is imposed that (i)

output comes back to its original level in the long run after a monetary shock and (ii) all sectoral

prices have identical responses —equal to that of the average price across sectors— in the long
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run.11 Both of these restrictions are consistent with the money neutrality hypothesis. We follow

Boivin, Giannoni, and Mihov (2009) to implement the latter restriction in the baseline FAVAR

specification.

We also consider an alternative case without “long run neutrality” restriction (a case also

considered by Boivin, Giannoni, and Mihov (2009)). In addition, following Gertler and Karadi

(2015), we explore a third alternative identification procedure using a High Frequency Identification

(HFI) in the VAR set-up. This allows us to deal with simultaneity issues without resorting to a

timing assumption (as in the Cholesky approach). In this approach, we use monetary surprises in

the euro area computed by Altavilla et al. (2019), relying on market interest rate changes around

the times of ECB Governing Council meetings.12

In all FAVAR specifications, we normalize the shock, so that the monetary policy shock produces

a 1% long-run decrease in the aggregate price level. This normalization assumption (which has no

bearings in terms of inference) departs from the usual approach to normalizations imposing that

the shock produces an effect on impact on the nominal interest rate. The normalization allows an

easier comparison with our theoretical model (where the size of the shock is proportional to the

long run response of the price level) and facilitates the interpretation of results relating the CIRP

to the sufficient statistic.

Filtering the Euribor. The theory suggests that a (contractionary) monetary policy shock

triggers a transient, and negative, impact on inflation and output. The VAR estimates based

on unfiltered interest rate data produce IRFs that are not consistent with these predictions, a

feature we relate to the marked downward trend in the nominal interest rate over the sample

period (see Figure A.1 — a pattern likely related to the decline in the “natural rate” of interest).13

Furthermore, the theory also suggests that all the sectors should have a negative IRFs of prices

after a contractionary monetary shock.

11In practice, we impose these restrictions at the horizon of 8 years. Note this horizon is independent and
substantially longer than the one over which we will compute cumulated IRFs (3 years in the baseline).

12In a robustness exercise, we also report results using a longer term interest rate -the 2-year German Bond rate-
as the policy rate and using the same HFI approach, to account for non–conventional monetary policy shocks.

13Identifying well-behaved monetary policy shocks for the euro area is particularly challenging over the sample
period, in particular due to the proximity of the effective lower bound on interest rates – see Andrade and Ferroni
(2021) and Jarocinski and Karadi (2020) for investigations in the context of information shocks.
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In our FAVAR model, we thus filter the interest rate to ensure that the FAVAR model produces

a negative and transient response on output and inflation after a contractionary monetary policy

shock. To do so, we use a one-sided HP filter, that does not use future data at one point in time,

as a hedge against introducing spurious correlations when using the filtered interest rate in the

VAR model. Our approach is to use a one-sided HP filter with a parameter λHP that maximizes

the number of PPI and CPI sectors with negative IRFs after 36 months of the shock. Appendix C

provides more details on our strategy to select the value for λHP .14 Notice that our selection

criterion relies on the sign of IRFs after 36 months, not on the CIR which will be used in our

regressions. Furthermore, our procedure for selecting the filter parameter makes no use of the

microeconomic data or the sectoral moments, so it is not biasing towards finding some relevance

of the sufficient statistic results. Our FAVAR estimation procedure is designed to produce a shock

that has the same negative price effect in all sectors and can be interpreted as a monetary policy

shock.

We select a value of λHP = 500, 000 for which about 70% of PPI and CPI products have a

negative IRF after 36 months (see Appendix C for more details).15

VAR Results: IRFs and CIRP ’s. Our estimated FAVAR provides theory-consistent results

for the responses of aggregate variables to a monetary shock. After a contractionary policy shock

the interest rate increases and subsequently decreases, going back to its steady state level in the

long run (IRFs are presented in Appendix Figure A.4). Industrial production immediately shrinks

after a contractionary monetary policy shock, then gradually recovers. The production price index

and the consumption price index both decline following the shock, then recover towards the new

steady-state value.

We focus our analysis on the objects used to test the sufficient statistic result, namely the

responses of sectoral producer and consumer prices, as derived from the FAVAR. Figure 3 reports

the estimated IRFs of production and consumer price series. In each panel, dashed red lines are

14Note that the literature does not agree on specific value for the one-sided HP filter, unlike with the standard
two-sided HP filter.

15As robustness, we have also run the whole empirical exercise including FAVAR and OLS product-level re-
gressions with λHP = 1M and results are qualitatively and quantitatively the same. Results are reported in the
Supplementary Appendix Table B.7, Table B.8 and Table B.9.
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the IRFs of different sectors partially aggregated, at the 2-digit level for PPI, and 1-digit level for

CPI.16 The thick red line is the average of all the dashed red lines. In both figures, we impose that

the long run price response is −1 percent at a long horizon (8 years). The transitory dynamics is

however heterogeneous across sectors. Most of them display a through in prices after 1 to 3 years

after the shock.

Finally, using the estimated IRFs of the PPI and CPI, we construct the CIRP s for each

sector/product category, as the sum of the respective IRF from time zero up to a time horizon

T . We select a baseline value of T = 36 months to compute CIRP s (see Table A.1 in Appendix

for descriptive statistics on product-specific CIRP s) but we will also provide robustness analysis

using two different values of T (24 and 48 months).

4.2 Measuring Micro Moments

Consumer Price (CPI) Micro Data. For consumer price micro data, we rely on longitudinal

data sets of monthly price quotes collected by the Institut National de la Statistique et des Études

Économiques (INSEE) to compute the monthly French CPI (Consumer Price Index). Stacking

data sets used in Baudry et al. (2007), Berardi, Gautier, and Le Bihan (2015) and Berardi and

Gautier (2016) and extending the data set to September 2019, we obtain a long sample covering a

period of about 25 years between August 1994 and September 2019.

The data set contains about 30 million of price quotes, and covers about 60% of the CPI

weights.17 Price changes are computed as log-differences of prices, and we exclude price changes

due to sales. To compute price adjustment moments, we have first dropped data collected around

VAT changes (i.e. in Aug.-Sept. 1995, Sept.-Oct. 1999, April-May 2000, July-Sept. 2009, Jan.-

Feb. 2012 and Jan.-Feb. 2014) and before and after the euro cash changeover (between Aug.

2001 and June 2002). We have also dropped price changes smaller than 0.1% in absolute values,

in both data sets, in order to control for possible small price changes due to measurement errors

16Our PPI/CPI series are available at the 4-digit and 5-digit levels, and the dashed red lines are constructed as
the arithmetic average of estimated IRFs.

17Some categories of goods and services are not available in our sample: centrally collected prices, among which
car prices and administered prices (e.g. tobacco) or public utility prices (e.g. electricity), as well as other types of
products such as fresh food or rents.
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(Eichenbaum et al. (2014)).

We compute price adjustment statistics excluding sales, as the model is not able to reproduce

price changes due to sales. For identifying sales we rely on an INSEE flag variable that identifies

whether a price corresponds to a sale price, either in the form of seasonal sales or temporary

promotional discounts.

We identify products at the 5-digit level of the ECOICOP product classification, which is

the most disaggregated level for which sectoral price indices are available. For each product, we

compute the frequency of price changes as the ratio between the number of price changes (but

excluding price changes due to sales) and the total number of prices for this product. We also

compute the kurtosis of price changes, as well as other moments of the price change distribution

(such as average price changes, the standard deviation of price changes and the skewness of price

change distribution), at the product level. Overall, our baseline data set contains price adjustment

moments for 223 different “ECOICOP-5” CPI products.

Measurement of kurtosis is notoriously a challenging issue, as large values of price changes, and

outliers, can have an important impact on kurtosis. Very large kurtosis values tend to be obtained

when not correcting for measurement errors.18 In our baseline, we drop from the calculations

price changes larger than 25% in absolute values, which corresponds to about five percent of

all price changes. As robustness, we provide results with alternative values for the thresholds

used to defining for outliers and address measurement errors concern (for very large or very small

price changes in absolute values). Drawing on Alvarez, Lippi, and Oskolkov (2022), we also provide

results using a measure of kurtosis including a correction for unobserved heterogeneity. Alternative

kurtosis measures are highly correlated across products.

Producer price (PPI) Micro Data. We rely on micro price data collected by INSEE to con-

struct the French Producer Price Index, this data set is the same as the one used in Gautier (2008)

where further details are available. Reported prices must be observed at the “factory gate”, ex-

18Note however that excluding sales by itself does not decrease the degree of kurtosis, see for instance Gautier
and Le Bihan (2022).
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cluding transport and commercialization costs, or invoiced VAT.19 Our sample contains more than

1.5 million price reports between January 1994 and June 2005. Overall, more than 90% of the

price quotes used to compute the French PPI are available. The PPI covers all products manufac-

tured and sold in France by industrial firms, which includes sections C (Mining and quarrying), D

(Manufacturing) and E (Electricity, gas and water supply) of NACE Rev 2 classification. As for

CPI, price changes are computed as log-differences of prices.

For each NACE 4-digit sector, we compute both the frequency of price changes and the kurtosis

of non-zero price changes, as well as other moments of the price change distribution. Unlike with

CPI, large price changes are much less frequent (reflecting that sales or temporary promotions are

absent in the business-to-business context of producer prices) and only 2% of all price changes are

larger than 22% in absolute value. To measure kurtosis, we drop price changes larger than 15% in

absolute values (which correspond to less than 5% of all price changes) and we test the robustness

of our results to this definition of price change outliers. We restrict to the subsample of sectors for

which an aggregate sectoral price index is available from the statistical office, so as to match micro

moments with time-series macro evidence in our subsequent analysis. This results in a baseline

sample containing 118 sectors.

Basic statistics for the micro data underlying both the CPI and the PPI are presented in

Table 1. Consumer prices are more rigid than producer prices, with average frequencies of price

changes of 10.6 percent and 19 percent respectively. The distribution of price changes has fat-tails

for both data sets, with a virtually identical value of the unweighted average kurtosis of 5.0 in both

data sets. One main important takeaway is there is some cross-sectoral dispersion in frequency

and kurtosis of price changes, for both consumer prices and producer prices - as apparent from the

interquartile ranges or standard deviations.20 The frequency of price changes however seems to

show relatively more cross-sectoral variability than the kurtosis of price changes. While alternative

corrections for measurement error and unobserved heterogeneity do change the average value of

kurtosis, they do not substantially affect the degree of cross-product heterogeneity however.

Cross-sectoral characteristics of both our CPI and PPI data sets are consistent with available

19Contrary to CPI prices, there is no flag for temporary promotions or sales. We assume, consistent with
Nakamura and Steinsson (2008), that there are no sales in producer prices.

20Figure B.1a and Figure B.1b in the Supplementary Appendix plot the full distribution of moments.

22



international evidence. As regards consumer price data, Berardi, Gautier, and Le Bihan (2015)

using the same data, provide a detailed comparison of CPI data moments in France with those in

the United States, based on detailed moments reported by Nakamura and Steinsson (2008). They

conclude that patterns are quite similar, whenever sales-related price changes are disregarded (as

the pattern of sales is however much more prevalent in the United States). Regarding producer

prices, Vermeulen et al. (2012) provide a comparison of the patterns of price setting in the United

States and 6 euro-area countries, including France - relying for that particular country on the same

data set as we use. They conclude patterns of producer price rigidities are very similar - albeit the

size of price changes is typically larger in the United States than in Europe. The above-mentioned

international evidence mainly focuses on the frequency of price changes, as well as on the first two

moments of the distribution of price changes. Evidence is scarcer on kurtosis. For US PPI data,

Hong et al. (2020) report and average kurtosis of 4.9. With consumer price data, Cavallo (2018)

report a median kurtosis of 4.8 in a large sample of countries based on “scraped” data. These

values, all obtained after correcting for measurement errors in the same spirit as we do, are thus

much in line with our baseline values.

5 Testing the Theory: Results

This section presents the results of the empirical tests developed in Section 3 using as inputs the

product-level CIRP (as measured in Section 4.1), and product-level moments of price adjustments

(as measured in Section 4.2).

5.1 Estimates of the Baseline Empirical Specification

This section presents our baseline estimation results. As detailed in Section 3, the theory predicts

that, in case of a contractionary monetary policy shock, the coefficient associated with Kurt/Freq

ratio should be positive in the regression for regression for CIRP . Indeed, a contractionary mon-

etary policy shock induces negative CIRY and CIRP for all products. Consistent with the theo-

retical prediction, products with smaller Kurt/Freq ratios are expected to experience a negative
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CIRY with smaller absolute value and conversely a more negative CIRP , resulting in a positive

coefficient associated with the Kurt/Freq ratio in the cross-section regression for CIRP . A smaller

Kurt/Freq ratio can reflect either more frequent price adjustments, more price selection or both,

implying smaller (absolute) real effects of a monetary policy shock and larger (absolute) cumulated

price response.

Table 2 reports results for equation (13), the baseline “constrained” regressions for horizon T

equal to 36 months.21 Regressions for the CIRP of PPI products are presented in Panel A while

those for the CIRP of CPI products are presented in Panel B. In each panel, we report results

for the three specifications for the identification of the monetary policy shock: (i) the baseline

one, with Cholesky identification and long run restriction on relative prices (columns 1 and 2); (ii)

identification using Cholesky but not imposing any restriction on the long-run effect on relative

prices (columns 3 and 4); (iii) another alternative where identification relies on High Frequency

Identification (HFI) (columns 5 and 6). For each type of monetary shock, we run regressions as

in equation (13) without including any product “fixed-effects” (columns 1, 3 and 5). Instead in

regressions reported in columns 2, 4 and 6, and labeled as including “fixed-effects”, we include

dummy variables for 2-digit level sectors for both CPI and PPI products. There are 38 such broad

2-digit sectors in our sample for the CPI, and 24 in the case of the PPI.22 We are agnostic on

whether the “fixed effect” case, or the no “fixed effect” one, is the most relevant specification.

If variability in the kurtosis-to-frequency ratio is mainly across broad sectors, then introducing

fixed effects will act as a confounding factor and may obscure the results in a finite sample of

data. By contrast, beside providing a hedge against spurious correlation, including fixed effects is

relevant if the relation between CIRP and the pricing-moments holds within broad sectors. Both

specifications inform us on the sources of product variability that help to identify the relation

between CIRP and the cross sectional moments: broad sector differences versus within-sector

variability.

21Figure B.2 in Supplementary Appendix plots product-level CIRP against the product-level ratio Kurt/Freq,
for the different FAVAR specifications and for both PPI products and CPI products. They illustrate a positive
relationship in the cross section of products between the value of CIRP and the value of the ratio Kurt/Freq for
most specifications.

22In the Appendix, as robustness, we also report results using dummy variables for more aggregate sectors (6 for
PPI and 12 for CPI).
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For producer prices (Panel A), the estimated slope coefficient associated with the Kurt/Freq

ratio turns out to be positive and statistically significant in most cases. Adding “fixed effects”

sectoral dummy variables weakens the significance of the estimated parameters, but the results are

qualitatively and —for most of coefficients— quantitatively the same as in our baseline regressions.

These results are consistent with the theoretical framework. Coefficients obtained in the case

without the long-run restriction (cols 3 and 4) are significant and with expected signs but are

larger than in the baseline case (cols 1 and 2), presumably reflecting a larger degree of variability

of the sectoral CIRP (see Table A.1 in Appendix).23

For consumer prices, the results (Panel B of Table 2) are mixed. When sectoral fixed effects

are not included, the Kurt/Freq ratio is small and not significant. When sectoral fixed effects

are included, the coefficients are positive and significant in the three specifications. These results

suggest that the relationship between CIRP and the pricing moments is driven mainly by within-

sector variability rather than broad sector differences. For CPI, the incidence of sales could be

of particular importance to explain why the relationship does not hold when looking at broad

differences across sectors. The extent of sales could indeed affect price adjustment moments even

if we have excluded price changes due to sales in the calculation of these moments. In particular,

if a large majority of price adjustments are due to sales or promotions in one sector, the pricing

moments excluding these changes might be not very representative of the typical price changes.

To explore this, we carry alternative estimation exercises removing all food, clothing/footwear and

furnishings goods, as within these broad sectors, most products are largely affected by seasonal

sales and replacements.24 In another set of additional estimates, we exclude CPI products for

which more than 10 percent of all price changes due to sales (this fraction corresponds to the

median value among all CPI products). Results are reported in Table 3. In all specifications,

the coefficient associated with the Kurt/Freq ratio is close to the one obtained in our baseline

case including sectoral fixed effects. In all except one specifications, we find that this coefficient

is significant. Overall, these results suggest that the sufficient statistic prediction better holds for

23The estimated values relying on the FAVAR with long-run restrictions are more consistent with our theoretical
set-up, while the FAVAR without these restrictions puts less constraint on the data but makes the size of the
coefficients more difficult to relate to the exact predictions of the theory.

24These products correspond to COICOP 01.1, 03 and 05 in the product classifications.
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CPI products less affected by sales.

Finally, the model provides not only predictions on the sign of the coefficients of the regressions,

but also on the magnitude of the coefficients. In the constrained version of the model, β is predicted

to be equal to − δ
6

which is 1/6 ≈ 0.167 since we use a normalized the shock δ = −1. The order

of magnitudes of estimates for PPI in Table 2 in the case of the specifications with long run

restrictions, are broadly in line with the predictions. The last row of each panel in Table 2 reports

the results of a more formal test for the β coefficient and we cannot reject that the value of the β

coefficient is consistent with model’s predictions.25 For CPI, however, the hypothesis that the value

of the β coefficient is consistent with model’s predictions can be rejected for most specifications.

When we consider products less affected by sales (Table 3), for which the β coefficient are in more

cases significant, we cannot reject that the coefficient is consistent with the theoretical value in

the specification without long run restriction - albeit the result is less favorable to theory for other

specifications.

5.2 Estimates of the “Unconstrained” Empirical Specification

To further investigate the relevance of both the kurtosis and the frequency of price adjustments

in explaining the propagation of monetary shocks, we report in Table 4 the estimate for equa-

tion (14), an “unconstrained” version of the regression that allows for a potentially different effect

of frequency and kurtosis.

For PPI products (Panel A), the estimates are consistent with the theoretical predictions in all

specifications. First, after a contractionary shock, if prices are more flexible in a given sector (i.e.

larger frequency), prices will decline faster and the product-level CIRP will be more negative. This

will induce a negative relationship between the frequency and CIRP . Second, a smaller kurtosis

in a given sector (i.e. a larger selection effect) is associated with a more negative reaction of

prices after a contractionary shock, resulting in a positive coefficient in the cross-section regression

between CIRP and kurtosis. When we do not include sectoral fixed effects, coefficients associated

with frequency but also kurtosis are all significant at 5% or 10% levels. In the specification with

25Table A.2 in Appendix D reports more results on formal tests showing that for PPI we cannot reject that the
constant is also equal to −36 as predicted by the theory (−δT = −36).
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sectoral fixed effects, the sign and the size of coefficients remain quite similar but they are not

significant any more for both frequency and kurtosis. Our interpretation is the addition of sectoral

fixed effects substantially reduces the source of cross-sectional variation and so, lowers the precision

of the estimates.

For CPI products (Panel B), we also find – in all cases – a negative and significant relation-

ship across sectors between frequency and the CIRP , and that the slope coefficient associated

with kurtosis is positive. Coefficients associated with frequency are statistically significant in all

specifications. Coefficients associated with kurtosis are significant in the case with Cholesky iden-

tification and long-run restrictions, and in the IV specification, but not in the case with Cholesky

identification and no long-run restriction. When considering CPI products which are less affected

by sales (Table 3), in all of specifications the frequency is significantly and negatively correlated

with CIRP . In half of specifications the kurtosis is significantly and positively correlated with

CIRP .

Finally, the last row of each Panel reports a formal test for equality in absolute values of the

hypothesis: βf = −βk, a property predicted by the theory. For PPI, in all regressions, we cannot

reject that slope coefficients associated with frequency and kurtosis are equal in absolute value.

For CPI, this is only the case in the Cholesky and IV specifications with long-run restrictions and

when sectoral fixed effects are not included (cols 1 and 5).26

As a complement to these regressions, note that frequency and kurtosis are significant and

have the expected sign in regressions in which they are in turn introduced alone as regressors (see

Table A.5 in the Appendix). This broadly reflects the weak correlation in our sample between

frequency and kurtosis. However, such a test is not a relevant test of the sufficient statistic in our

view.

26Table A.2 in the Appendix reports p-values of formal Fisher tests from the estimated parameters. For PPI
products, we find that in all specifications, results are fully in line with predictions on the amplitude of the coefficients
and we cannot formally reject that the size of coefficients are consistent with model’s predictions. It is less the case
for CPI products.
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5.3 “Placebo” Tests

While the above results are consistent with the “sufficient statistic” property, a sufficient statistic

property predicts something broader: it implies that the effect of a monetary shock should be

related to the ratio “kurtosis over frequency” but it also implies that other moments of the price

distribution should not matter in this relationship. To test this prediction, we run a regression in

which we add to our baseline regressors three additional moments of the price change distribution

computed at the product level: the average size of (non-zero) price changes, the standard deviation

and the skewness of price adjustments. This exercise can be considered as a “placebo” test of our

baseline regressions, testing that our main result is not driven by correlations between frequency

or kurtosis and other moments of the price change distribution.

Table 5 provides results for this specification. For PPI products (Panel A), the coefficients

associated with the ratio of kurtosis over frequency are highly similar to the ones obtained in the

baseline case (Table 2). They are much less precisely estimated however, and they remain signifi-

cant at 5% level only in two specifications without sectoral fixed effects. Importantly, neither the

average size of price changes, nor the standard deviation of prices changes, nor the skewness of

price changes, do have statistically significant effects in any of the six specifications. These two

results are consistent with the theoretical prediction. We have in addition estimated an uncon-

strained version of the “placebo” regression (results are in Table A.3 in the Appendix). Results for

PPI products are broadly robust, although the degree of significance decreases, presumably owing

to multi-colinearity.

For CPI products (Panel B), results are, as with the baseline specification, more mixed. The

coefficient on Kurt/Freq is positive and significant in only two cases and several coefficients

associated with the “placebo” moments are significant (in 8 cases out of 18). Results are also

quite mixed when looking at the unconstrained version of the “placebo” regressions (see Table A.3

in the Appendix). We have run the same placebo regressions for CPI products less affected by

sales (Table A.4 in the Appendix). In that case, the coefficient associated with Kurt/Freq ratio

remains positive and significant in all specifications and only three coefficients (over 18) associated

with the “placebo” moments are significant at 10% level.
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As alternative “placebo” tests, we have also considered introducing other covariates that may

be confounding factors. Candidates are average inflation, production volatility (available for PPI

only), or the degree of “upstreamness” in the production chain (as captured by dummies for broad

sectors). Results are reported in Table A.13 and Table A.14 in the Appendix. Overall, results

are unaffected: the Kurt/Freq ratio remains significant. One qualification, though, is that the

variable average inflation turns out to be significant in some cases.

6 Robustness Analysis

This section explores the robustness of our findings with respect to several dimensions: (i) the

time horizon of the CIR; (ii) the measurement of kurtosis; (iii) the exclusion of products with a

large drift in prices; (iv) the use of long-term bond as a policy indicator (related to the zero lower

bound on interest rates and unconventional policies); (v) using moments of price durations as an

alternative sufficient statistics; (vi) using the CIR of output as a dependent variable.27

6.1 The Time Horizon of the CIR

In our baseline results, the CIRP is computed cumulating price deviation for 36 months after

the shock. We have carried out our various estimations using time horizons of T = 24 months

and T = 48 months and results are reported in the Appendix in Table A.6, Table A.7, Table A.8

and Table A.9. For the 48-month time horizon, the slope coefficients associated with the ratio

Kurt/Freq are almost identical as the ones obtained for the 36-month horizon. When we use

CIRP calculated over a 24-month horizon they are lower but still close. As expected, estimates

of the intercepts vary with the time horizon. In all regressions, results are quantitatively and

qualitatively close to the baseline results.

27We have also performed robustness analysis to investigate: vii) the influence of product with outliers for CIRP ,
or of frequency of price changes, kurtosis or the ratio Kurt/Freq, and viii) the case excluding CPI from the FAVAR
(hence from the full analysis). Results were largely unaffected and for brevity these cases are discussed in the
Supplementary Appendix.
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6.2 The Measurement of Kurtosis

The measurement of kurtosis is known to be severely affected by unobserved heterogeneity. We run

robustness regressions using a measure of kurtosis, based on Alvarez, Lippi, and Oskolkov (2022),

that takes into account product-level unobserved heterogeneity. Results reported in the Appendix

Table A.10 are very much in line with the ones in our baseline regressions. For PPI, the coefficient

associated with the Kurt/Freq ratio is positive, and significant in all specifications, whereas

for CPI the estimated coefficients are not statistically different from 0. In the unconstrained

regression, results are also qualitatively and quantitatively similar to the ones obtained in the

baseline regressions.

We also investigate the role of very large or very small price changes (in absolute values) for the

measurement of kurtosis. In the baseline regressions, we have used kurtosis measures calculated

on the sample of price changes smaller in absolute value than 15% for PPI price changes and

than 25% for CPI price changes (i.e. 5% of all price changes in both cases) and we have excluded

price changes below 0.1% in both cases. We here test the robustness of our results to modifying

the thresholds defining extreme price changes. In a first exercise, we investigate the role of large

price changes and we set the thresholds defining extreme values to 25% for PPI price changes and

35% for CPI price changes (i.e. about 2% of all price changes). In a second exercise, we set the

threshold for small price changes to 0.5% (which corresponds to about 5% of all price changes).28

The results overall remain in line with the baseline results (see Table B.10 and Table B.11 in

the Supplementary Appendix). Standard errors of coefficients are however higher, lowering the

significance of the estimated coefficients, in particular for large producer price changes.

6.3 Using a Long-Term Yield as Policy Indicator

In this robustness, we alter the policy rate used in the FAVAR estimation where the shock is

identified using an external instrument approach. The main motivation is that over the last part

of our sample the short-run policy rate was arguably constrained by the proximity of the effective

28We have also run similar exercises with other definitions of small and large price changes and conclusions are
very similar.
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lower bound for interest rates, and the ECB engaged in unconventional monetary policies intended

to influence long-term interest rates.29 We use the 2-year German sovereign bond rate, a relevant

risk-free long-term interest rate, instead of the 3-month Euribor rate.30

Results relating sectoral CIR from this FAVAR model and the sufficient statistic, for PPI

products, are in line with the baseline (see Table A.11 in the Appendix). The coefficient associated

with the Kurt/Freq ratio is positive and significantly different from 0 (and we cannot even reject

the coefficient being equal to the predicted value of 1/6). In the unconstrained specification, the

estimated parameters associated the frequency and kurtosis are very close to the ones obtained

in the baseline case. For CPI products, the coefficient associated with the Kurt/Freq ratio is

positive and significant but small in the case without fixed effects. In the unconstrained version

of the model, frequency is negative and significant as in the baseline but the parameter associated

with the kurtosis is not significant any more.

6.4 Removing products with sizeable drifts in price levels

The theoretical predictions of the model are derived under the assumption of low inflation. While

this assumption is clearly fulfilled for the aggregate inflation rate in France over our sample period,

a concern is that for some specific sectors it may not be the case. Table 1 provides some statistics on

the average product-specific inflation rates in absolute values. Product-level inflation rates (taken

in absolute value) are typically small as well: average and median inflation rates are about 1.5%

per year whereas the third quartiles of inflation distribution are around 2%. In this robustness

exercise, we remove all products for which we observe a “non-small” average inflation rate (in

absolute values). In practice, we define small inflation rates as products with an average annual

inflation lower than 5% in absolute values.31 For PPI products, only two products are removed,

whereas for CPI, 9 products are removed. For both PPI and CPI, results are reported in Appendix

29Note however that the policy rate was negative from 2014, and statements by the ECB indicate that the lower
bound was not actually reached afterwards.

30Jarocinski and Karadi (2020) use the 1-year and 2-year German bond as a policy variable in their analysis of
ECB monetary policy.

31Gagnon (2009), Nakamura et al. (2018) or Alvarez et al. (2019) for evidence on price rigidity in higher inflation
environments, they tend to show that when inflation is below 5%, patterns of price rigidity (in particular, frequency
of price changes) are rather unchanged.
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Table A.12 and they are very consistent with the ones obtained in the baseline regressions.32

6.5 Using the CIR of output

Originally, the theoretical results were developed using CIRY , but deriving the predictions for

CIRP is straightforward as shown above. We focused our empirical analysis on CIRP for two

reasons. First, product-level measures of output are only available at an infra-annual frequency for

producer goods, and not for consumer goods. Second, the sufficient statistic prediction derived for

CIRY contains a “nuisance parameter”, the industry-specific elasticity (εj), which is not the case

for prices where the prediction simply links CIRP to the kurtosis over frequency ratio. This extra

parameter in the prediction for output could blur the quantitative interpretation of the estimated

coefficients and might also complicate the estimation of the correlation between CIRP and the

kurtosis-over-frequency ratio.

However, as a robustness exercise, we have performed estimations for output in the case of PPI,

using the sectoral Industrial Production Index as product-specific output variable. The shock is

normalized the same way as for producer prices.33 Results of regressions using the CIRY ’s as

dependent variables are reported in Table A.15 of the Appendix.34 Note that the Kurt/Freq ratio

is now expected to have a negative sign, opposite to the case of CIRP . The results turn out to be

mixed and generally weaker than using CIRP . In all cases (whether with “long-run restriction”

or not, and with fixed effects or not) the Kurt/Freq has the expected sign. However, it is not

significant, reflecting very imprecise estimates (in particular with fixed effects). Our interpretation

is that the weaker results are consistent, and in fact to be expected, in the presence of heterogeneity

in the industry-specific income elasticity (εj).

6.6 Using moments from the distribution of price durations

Another robustness test consists in using moments of price durations as a substitute for the can-

didate sufficient statistic Kurt/Freq. Indeed, several authors have exploited the idea that the

32Using a threshold at 4% for defining ’small’ vs ’large’ inflation rates leads to similar results.
33The number of products is larger than in the case of prices because more product-level IPIs (than PPIs) are

available over a long-time dimension.
34Further results are provided in a Supplementary Appendix Table B.4, Table B.5.
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distribution of the durations of price-spells is informative about monetary non-neutrality, see e.g.

Carvalho and Schwartzman (2015) and Baley and Blanco (2021). As shown by Alvarez, Lippi,

and Paciello (2016) (proposition 2), the distribution of durations provides an alternative formula

to compute the CIR, involving two moments: the average price-spell duration and the squared

coefficient of variation of durations. The former is obviously related to the average frequency of

price changes appearing in equation (5), the latter is a stand in for the kurtosis. Indeed, if the

distribution of the idiosyncratic shocks is normally distributed the two formulas are equivalent.

Regression results involving these spell duration moments are reported in the Appendix (Ta-

ble A.16). The specification suggested by Alvarez, Lippi, and Paciello (2016), where duration and

the coefficient of variation (CV) enter the regression multiplicatively, appears significant with the

expected sign, both for the PPI as well as for the CPI sample. As mentioned above this result is

consistent with the ones shown above using the moments from the distribution of price changes.

The regressions where the frequency and the CV are entered as separate regressors also show the

correct sign but the statistical significance of the CV regressor is weaker. We note that in several

models, such as the ones discussed in Section 2, there is a tight link between the distribution of

durations and the distribution of price changes. The two distributions encode the same information

(see Appendix E in Alvarez, Lippi, and Oskolkov (2022) for a formal analysis of this equivalence).

Under the null hypothesis that the model is the data generating process the two tests are equiva-

lent. Differences in the statistical significance of the regressions might be due to differences in the

quality of the data (measurement errors in durations vs size of price changes) or reflect deviations

from the assumed normal distribution for the firm’s idiosyncratic shocks.

7 Conclusion

In a broad class of sticky price models the non-neutrality of nominal shocks is captured by a

simple sufficient statistic: the ratio of the kurtosis of the size-distribution of price changes over

the frequency of price changes. This paper tested this theoretical prediction using sectoral and

microeconomic data for France both for PPI and CPI products. Our test followed three steps. We

first measured the effects of monetary shocks using a Factor Augmented VAR across a number of
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industries. Second, we measured the candidate sufficient statistics using micro data for the same

industries. Third, we checked whether the sufficient statistic displays a systematic relation with

the non-neutrality across industries, as the theory suggests.

We found substantial support for the theoretical predictions, particularly so in the PPI data.

The estimated industry non-neutrality correlates with the kurtosis and the frequency consistently

with the predictions of the theory. Several robustness tests are investigated and the results appear

solid. The support for the theoretical predictions is weaker on the CPI data. This might possibly be

due to seasonal sales (or price plans). Such features, prevalent in the CPI, violate the assumption

under which the sufficient-statistic result is derived. Another possible confounding factor is the

presence of learning (price discovery), a feature shown by Baley and Blanco (2019) to weaken the

power of the sufficient statistic, and which likely is more prevalent in the CPI.

Avenues for future research include considering the sectoral data of other countries or extending

the analysis to set-ups that feature a non-negligible drift, like economies with high inflation or the

investment problem studied by Baley and Blanco (2021). Another interesting possibility is the

use of granular data for additional tests of the theory. A recent test of the sufficient statistic was

developed by Gautier, Marx, and Vertier (2021) for the gasoline industry, using granular data

on prices measured at gas stations. The data provide an ideal testing ground for the theory, in

spite of the fact that they are not representative of a whole economy. The results provide very

strong support for the sufficient statistic predictions. Other granular datasets may allow one to

test the predictions of the theory and possible explore the state dependence of aggregate shocks, a

hallmark of lumpy-adjustment models, as considered by Caballero, Engel, and Haltiwanger (1997)

and Caplin and Leahy (1997). Finally, the tractable model we used for the analysis of a mean

reverting interest rate shock could be applied to other problems where nominal shocks feature a

predictable transitory component, such as forward guidance shocks or sticky wages.
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Figures and Tables

Figure 1: Mean reverting interest rate shock
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Note: the nominal shock equals W (t) = δ (1 + ω(t)). The left panel plots the transitory component ω(t) ≡ w0e
−γt,

and the associated nominal interest rate shock R(t) − R̄ = δR̂0e
−γt for two values of the initial shock R0. We set

δ = 0.01 and consider a -25 basis points shock to the interest rate with a half-life of 1 year corresponds to R̂0 = −1/4
and γ = 0.69. By equation (7) then ω0 = 0.36. The right panel shows the aggregate price response to the W (t) shock
(thick line) and to the once and for all shock (ω(t) = 0, dotted line).

Figure 2: Normalized CIRY as a function of the shock’s duration
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Note: the figure plots the Cumulative impulse response for different degrees of the shock persistence (half-life). Each
panel considers three models indexed by the degree of kurtosis (a function of `). The computation uses equation (10).
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Figure 3: Sectoral Responses of PPI and CPI to a Contractionary Monetary Shock

Note: this figure plots the impulse response function of product-level prices (measured in log points in deviation
from the “steady state” (y-axis)), the left panel corresponds to the sectoral IRFs of PPI products and the right
panel corresponds to sectoral IRFs of CPI products. All product-level IRFs are computed at a disaggregate
product level; for CPI, the level of disaggregation is 5 digit-level of the ECOICOP classification (ie. ‘01.1.1.1’)
whereas for PPI, the product level is the 4-digit level of the NACE rev2 classification of sectors. Each dashed red
line corresponds to sectoral IRFs computed at a 2-digit product level (ie. as the simple average over the most
disaggregated product level IRFs used then in our OLS regressions), thick red line plots the average IRF
computed over all disaggregated product-level IRFs.
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Table 1: Micro Moments of Price Adjustments: Descriptive Statistics

Nb Mean Q1 Q2 Q3 SD
products

Panel A: Frequency of price changes
CPI 223 0.106 0.039 0.088 0.143 0.104
PPI 118 0.190 0.086 0.123 0.185 0.208
Panel B: Kurtosis of non-zero price changes - with robustness
CPI - baseline 223 5.039 3.355 4.434 5.652 2.952
PPI - baseline 118 5.068 3.927 4.615 5.857 1.851

CPI - outlier |∆p| < 0.5% 223 4.616 3.559 4.281 5.166 1.738
PPI - outlier |∆p| < 0.5% 118 4.777 3.183 4.220 5.411 2.821

CPI - outlier |∆p| > 35% 223 6.273 3.880 5.471 7.207 4.316
PPI - outlier |∆p| > 25% 118 7.805 5.532 6.956 9.042 3.952

CPI - hetero (S=5) 223 3.424 2.227 3.194 3.834 2.013
PPI - hetero (S=5) 118 3.917 2.638 3.435 4.497 2.036
Panel C: Mean of non-zero price changes (percent)
CPI 223 1.219 0.294 0.947 2.074 2.124
PPI 118 0.793 0.204 0.722 1.405 0.906
Panel D: Standard deviation of non-zero price changes (percent)
CPI 223 7.587 6.018 7.298 9.251 2.307
PPI 118 4.149 3.606 4.134 4.674 0.872
Panel E: Skewness of non-zero price changes
CPI 223 -0.261 -0.419 -0.250 -0.098 0.367
PPI 118 -0.274 -0.559 -0.275 0.028 0.444
Panel F: Average inflation (in percent, absolute values)
CPI 223 1.883 0.663 1.531 2.368 2.123
PPI 118 1.556 0.903 1.327 1.984 1.111

Note: Calculations on CPI micro data are made over the period 1994-2019 (30 million of monthly price quotes).
Prices of rents, cars, fresh food products, electricity and clothing goods are non-available or excluded. Price
changes due to sales and promotions are excluded (using the INSEE flag). VAT change and euro–cash changeover
periods are excluded as well. Calculation on PPI data are made over the period 1994-2005. We here report some
descriptive statistics of the distribution of product-specific moments of price rigidity for PPI and CPI products
(statistics are unweighted). ’Frequency’ reports the ratio between the number of price changes and the total
number of prices. ’Mean’, ’Standard deviation’, ’Skewness’ and ’Kurtosis’ are calculated on the distribution of
non-zero log price changes, expressed in percentages. In our baseline calculations, we have excluded all price
changes below than 0.1% in absolute values and larger than 25% in absolute values for CPI price changes and 15%
for PPI price changes. Panel F provides statistics on the average product-specific inflation in absolute values over
the period 2005-2019. “Hetero (S=5)” refers to the correction for heteroskedasticity presented in the Appendix.
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Table 2: Baseline OLS Regression Results : “Constrained” Specification - 36-month horizon

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: PRODUCER PRICES

Kurt/Freq 0.206*** 0.116** 0.543** 0.231 0.189*** 0.135**
(0.0744) (0.0544) (0.247) (0.175) (0.0646) (0.0555)

Constant -27.93*** -17.85*** -42.64*** -34.19*** -34.08*** -27.29***
(4.563) (3.132) (15.57) (6.979) (3.834) (6.984)

Observations 118 118 118 118 118 118
R2 0.095 0.534 0.058 0.468 0.110 0.452
P-val β = 1/6 0.598 0.358 0.129 0.713 0.736 0.568

PANEL B: CONSUMER PRICES

Kurt/Freq -0.00221 0.0416*** 0.0275 0.0931** 0.0125 0.0328***
(0.0150) (0.0151) (0.0397) (0.0434) (0.0107) (0.0118)

Constant -16.42*** -11.74*** -19.11*** -20.00*** -23.78*** -21.61***
(1.958) (1.190) (5.763) (4.438) (1.582) (0.768)

Observations 223 223 223 223 223 223
R2 0.000 0.439 0.002 0.334 0.006 0.649
P-val β = 1/6 0.000 0.000 0.001 0.092 0.000 0.000

Note: this table reports results of OLS regressions (equation (13)) where the dependent variable is the

product-specific CIR
Pj

T (calculated for the horizon T=36 months, and expressed in %) and the right-hand-side

variable is the ratio Kurt/freq. Each observation corresponds to a disaggregate CPI or PPI product. For CPI,

the level of disaggregation is 5 digit-level of the ECOICOP classification (ie. ‘01.1.1.1’) whereas for PPI, the

product level is the 4-digit level of the NACE rev2 classification of sectors. PPI covers the manufacturing sectors

whereas CPI covers about 60% of the whole French CPI (main products excluded are rents, cars, utilities like

electricity). Product fixed effects are defined at the 2-digit level for both CPI and PPI products (i.e. 38 product

fixed effects for the CPI, and 24 in the case of the PPI). Robust standard errors are reported in parentheses. ***

p<0.01, ** p<0.05, * p<0.1
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Table 3: Regression Results: Role of sales - Consumer Prices

Case 1: Excluding food, Case 2: Products with % of sales
clothing/footwear, furnishings prices below the median

Identification Cholesky Cholesky High-Freq. IV Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes Yes No Yes

PANEL A: Constrained model
Kurt/Freq 0.0472** 0.0791 0.0423*** 0.0421** 0.163*** 0.0482***

(0.0185) (0.0575) (0.0156) (0.0211) (0.0593) (0.0173)

Constant -21.75*** -21.19** -27.01*** -20.11*** -38.04*** -28.17***
(3.431) (10.50) (2.908) (4.029) (10.77) (3.318)

Observations 134 134 134 111 111 111
R2 0.061 0.018 0.064 0.044 0.085 0.077
P-val β = 1/6 0.000 0.130 0.000 0.000 0.957 0.000

PANEL B: Unconstrained model
Freq/F̄ -10.63*** -30.41*** -6.949*** -12.19*** -36.28*** -7.860***

(1.623) (5.072) (0.917) (2.170) (5.770) (1.061)

Kurt/K̄ 3.814*** 1.335 3.585*** 1.764 3.386 3.866**
(0.906) (3.603) (1.427) (1.314) (4.366) (1.904)

Constant -9.623*** 16.78** -18.88*** -4.925* 13.35** -18.72***
(2.060) (6.987) (1.946) (2.570) (6.362) (2.781)

R2 0.641 0.528 0.373 0.613 0.681 0.372
Observations 134 134 134 111 111 111
P-val βf = −βk 0.001 0.000 0.016 0.000 0.000 0.047

Note: This table reports OLS results of the constrained model (equation (13)) for CPI products relating product-

specific CIR
Pj

T (calculated for the horizon T=36 months and expressed in %) to the ratio Kurt/freq and OLS

results of the unconstrained model (equation (14)) relating product-specific CIR
Pj

T (expressed in %) to the ratio

of the product-level frequency over its average Freq/F̄ and the ratio of the product-level kurtosis over its average

Kurt/K̄. In Case 1, we have removed goods of three broad sectors where sales concentrate (COICOP01.1 Food,

COICOP03 Clothing/Footwear, and COICOP05 Furnishing goods). In Case 2, we have removed products for which

the share of sales and promotions represent more than 11% of all price changes (this threshold corresponds to the

median of this ratio over all CPI products). Product-fixed effects are not included. Robust standard errors are

reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 4: Regression Results - “Unconstrained” Specification - 36-month horizon

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: PRODUCER PRICES
Freq/F̄ -7.366** -3.699 -22.35* -8.245 -6.241** -3.610

(3.136) (2.432) (11.50) (10.15) (2.827) (2.575)

Kurt/K̄ 8.864** 5.788 24.19* 21.33 7.065** 3.930
(4.257) (3.739) (14.53) (13.60) (3.300) (3.305)

Constant -20.45*** -15.93*** -20.79 -38.60*** -26.68*** -23.04***
(4.488) (3.867) (15.44) (13.13) (3.234) (6.445)

Observations 118 118 118 118 118 118
R2 0.211 0.553 0.164 0.483 0.205 0.462
P-val βf = −βk 0.720 0.621 0.897 0.383 0.790 0.916

PANEL B: CONSUMER PRICES
Freq/F̄ -7.260** -12.06*** -23.58*** -31.08*** -4.989*** -6.636***

(2.831) (1.537) (7.547) (6.082) (1.409) (0.944)

Kurt/K̄ 4.724*** 3.003* 2.285 -3.530 3.541*** 2.687**
(1.689) (1.567) (3.641) (3.461) (1.161) (1.076)

Constant -14.09*** 5.587* 4.675 34.30*** -21.21*** -12.69***
(3.560) (3.156) (8.494) (10.85) (2.068) (1.848)

Observations 223 223 223 223 223 223
R2 0.215 0.723 0.257 0.576 0.176 0.793
P-val βf = −βk 0.469 0.000 0.0136 0.000 0.417 0.005

Note: this table reports results of OLS regressions (equation (14)) where the dependent variable is the product-

specific CIR
Pj

T (calculated for the horizon T=36 months, and expressed in %) and the right-hand-side variables are

the ratio of the product-level frequency over its average Freq/F̄ and the ratio of the product-level kurtosis over

its average Kurt/K̄. Product fixed effects are defined at the 2-digit level for both CPI and PPI products (i.e. 38

product fixed effects for the CPI, and 24 in the case of the PPI). Robust standard errors are reported in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table 5: Regression Results - Placebo Specification - 36-month horizon

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: PRODUCER PRICES
Kurt/Freq 0.201** 0.110 0.513 0.222 0.188** 0.0987

(0.0960) (0.0782) (0.312) (0.275) (0.0768) (0.0666)

Mean -1.430 -1.350 -10.90 -4.844 -1.262 1.273
(1.771) (1.694) (6.644) (7.412) (1.522) (1.677)

Skewness -1.869 -3.824 -16.72 -6.397 -2.207 -3.327
(4.613) (4.452) (17.15) (20.29) (2.718) (3.625)

SD -1.355 0.445 -6.436 -4.213 -0.182 2.197
(2.509) (2.335) (8.512) (8.616) (2.011) (1.728)

Constant -21.45** -19.54 -10.56 -11.56 -32.89*** -38.56***
(9.551) (12.41) (30.11) (44.33) (7.834) (11.33)

Observations 118 118 118 118 118 118
R2 0.100 0.537 0.075 0.471 0.113 0.465

PANEL B: CONSUMER PRICES
Kurt/Freq -0.0199 0.0231 0.0866 0.158** 0.0116 0.0299**

(0.0223) (0.0218) (0.0562) (0.0609) (0.0140) (0.0146)

Mean 1.333** 1.650** -0.882 0.546 0.132 0.759*
(0.581) (0.692) (1.844) (1.860) (0.438) (0.427)

Skewness 5.920** 3.762 17.76** 4.780 4.161** 3.868**
(2.717) (2.869) (8.502) (9.304) (1.723) (1.796)

SD -0.823 -0.0602 3.128 5.094** -0.528 0.251
(0.719) (0.871) (1.899) (2.190) (0.532) (0.517)

Constant -8.657 -11.05 -42.46** -60.04*** -18.77*** -23.17***
(7.080) (6.737) (18.92) (18.31) (4.394) (4.001)

Observations 223 223 223 223 223 223
R2 0.037 0.455 0.049 0.367 0.027 0.658

Note: this table reports results of OLS regressions (equation (13)) where the dependent variable is the product-

specific CIR
Pj

T (calculated for the horizon T=36 months and expressed in %) and the right-hand-side variables

include the product-specific ratio Kurt/freq but also three other moments of the product-specific price change

distribution: the average price change Mean, the skewness of price changes Skewness, and the standard deviation

of price changes StandardDev.. Product fixed effects are defined at the 2-digit level for both CPI and PPI products

(i.e. 38 product fixed effects for the CPI, and 24 in the case of the PPI). Robust standard errors are reported in

parentheses. *** p<0.01, ** p<0.05, * p<0.1
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ONLINE APPENDIX

Empirical Investigation of a
Sufficient Statistic for Monetary Policy Shocks

Fernando Alvarez, Hervé Le Bihan, Andrea Ferrara, Erwan Gautier, Francesco Lippi

A The equilibrium representation as a MFG

We let u(x, t) denote firm’s value function and m(x, t) denote the cross sectional distribution of
x ∈ [x(t), x̄(t)]. The equilibrium for this problem can be represented as a mean field game, as in
Alvarez, Lippi, and Souganidis (2022). Consider the problem of a firm that takes as given a path
for {W(t)} for t ∈ [0, T ), and a terminal value function uT (x), allowing for T →∞.

Given initial and terminal conditions, {m0, uT}, a mean field game consists of the functions u
and m, mapping R× [0, T ] to R, and functions x, x̄, x∗, X mapping [0, T ] to R. The equilibrium is
given by the solution of two partial differential equations: the Hamilton-Jacobi Bellman (HJB) for
the firm’s value function u, and the Kolmogorov Forward Equation (KFE)) for the cross sectional
density m. For all t ∈ [0, T ] and for all x ∈ [x(t), x̄(t)] the equations are

0 = ut (x, t)− ρu(x, t) +
σ2

2
uxx(x, t) + F (x,W(t)) + ζ [u(x∗(t), t)− u(x, t)] (16)

0 = −mt (x, t) +
σ2

2
mxx(x, t)− ζm(x, t) and x 6= x∗(t) (17)

where the flow cost F (x,W(t)) was given in equation (8) for all t ∈ [0, T ] and the path W(t) is
given. The function u(x, t) solves the HJB in equation (16), with appropriate boundary conditions,
given in (19) - (21). Because of the time dependence of W(t) the value function u depends on
time. The density m(x, t) satisfies the KFE in (17), with appropriate boundary conditions given
in (22) - (24). The density is needed to compute the average value of the gap

X(t) =

∫ x̄(t)

x(t)

xm(x, t)dx and x∗(t) = arg min
x
u(x, t) (18)

Together withW(t) it gives the aggregate output deviation from steady state as the inverse of the
average price gap.

The boundary and terminal conditions for u are:

ux (x̄(t), t) = ux (x(t), t) = ux (x∗(t), t) = 0 for all t ∈ [0, T ] (19)

u (x̄(t), t) = u (x(t), t) = u (x∗(t), t) + ψ for all t ∈ [0, T ] (20)

u(x, T ) = uT (x) for all x (21)
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The boundary and initial conditions for m are

0 = m (x̄(t), t) = m (x(t), t) for all t ∈ [0, T ] (22)

1 =

∫ x̄(t)

x(t)

m(x, t)dx for all t ∈ [0, T ] (23)

m(x, 0) = m0(x) for all x (24)

We solve for the equilibrium dynamics using the method described in Alvarez, Lippi, and
Souganidis (2022). The setup here is simpler in that the two pde’s are not coupled, since W(t) is
exogenously given.35

A.1 Optimal decisions and aggregation after a shock

We consider a perturbation of the steady state indexed by the size of the shock δ, and focus on
the local dynamics around δ = 0. We follow the perturbation method in Alvarez, Lippi, and
Souganidis (2022) (ALS henceforth) and solve for the derivatives of the objects of interest, from
which we construct the full solution up to the first order.

We consider an equilibrium with {x̄(t, δ), x(t, δ), x∗(t, δ), X(t, δ), u(x, t, δ),m(x, t, δ)}, where δ
indexes the perturbation of the initial condition for a given ω(t). We differentiate all the equilibrium
objects with respect to δ and evaluate them at δ = 0. For all t ∈ [0, T ] we denote these derivatives
as follows:

v(x, t) ≡ ∂

∂δ
u(x, t, δ)|δ=0 for all x ∈ [−1, 1]

n(x, t) ≡ ∂

∂δ
m(x, t, δ)|δ=0 for all x ∈ [−1, 1], x 6= 0

z̄(t) ≡ ∂

∂δ
x̄(t, δ)|δ=0 , z(t) ≡ ∂

∂δ
x(t, δ)|δ=0 , z

∗(t) ≡ ∂

∂δ
x∗(t, δ)|δ=0 and

Z(t) ≡ ∂

∂δ
X(t, δ)|δ=0

Once these derivatives are solved for, all objects of interest can be computed as e.g. u(x, t, δ) ≈
ũ(x) + δv(x, t), m(x, t, δ) ≈ m̃(x) + δn(x, t), or X(t, δ) ≈ δZ(t) since we consider a perturbation
around the steady state, where the approximation error is of order smaller than δ.

We study the evolution of the derivative of the value function, v(x, t), as function of the path of
the average price gap {Z(t)}. To do so we first obtain the pde and boundary conditions that v(·, t)
satisfies. We then look for an explicit solution of v(·, t), which we use to compute the thresholds
{z(t), z∗(t), z̄(t)} as a function of the path of {ω(t)} (see section 3 in ALS for details).

We use the analytic solution in Proposition 4 of ALS to solve for the optimal path of the
thresholds following the shock. The analysis shows that z(t) = z̄(t) so that the width of the
inaction region remains constant (the upper and lower thresholds move by the same amount). We

35The problem in Alvarez, Lippi, and Souganidis (2022) has a fixed point structure since W(t) = X(t) , and
thus the problem cannot be solved recursively. In words, decisions depend on aggregates, which in turn depend on
decisions. Here instead decisions depend on the exogenous path W(t). This allows us to solve for equation (16)
without knowing m(x, t).
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have

z̄(t) = −Ā
∫ T

t

H̄(τ − t)ω(τ)dτ for all t ∈ [0, T ) (25)

z∗(t) = −A∗
∫ T

t

H∗(τ − t)ω(τ)dτ for all t ∈ [0, T ) (26)

where H̄ and H∗ are defined as:

H̄(s) ≡
∞∑
j=1

e−(η2+(jπ)2) k s > 0 , H∗(s) ≡
∞∑
j=1

e−(η2+(jπ)2) k s(−1)j < 0 for all s > 0

and
Ā ≡ k 2η2

[1−η coth(η)]
< 0 , A∗ ≡ k 2η2

[1−η csch(η)]
> 0

and for notation convenience we defined the constants

k ≡ σ2

2
, η ≡

√
ρ+ ζ

k
, ` ≡

√
ζ

k

Equation (25) and (26) show that the optimal policy thresholds at time t are determined by
the presented discounted value of the future evolution of the aggregate shock ω(t).

Likewise, we use proposition 8 in ALS to compute the mean value of the price gap following
the shock (we note that without loss of generality we normalize x̄ = 1 in ALS, this amounts to a

rescaling of monetary shocks). We also define the “calvoness index” ` ≡
√

ζ
k
, so that `→ 0 yields

the canonical menu cost problem and `→∞ gives the Calvo model. We have

Z(t) = Z0(t) + 4k

∫ t

0

G∗(t− τ)z∗(τ)dτ + 4k

∫ t

0

Ḡ(t− τ)z̄(τ)dτ (27)

for all t ∈ [0, T ] and where Ḡ, G∗ and Z0, are defined as

Ḡ(s) ≡ −m̃x(1)
∞∑
j=1

e−(`2+(jπ)2) k s > 0 and G∗(s) ≡ −m̃x(0
+)

∞∑
j=1

(−1)j+1e−(`2+(jπ)2)k s > 0

for all s ≥ 0, m̃x(1) and m̃x(0
+) are constants given in proposition 5 and

Z0(t) ≡ 2
∞∑
j=1

`2

`2 + (jπ)2

(
(−1)j

(
1 + e2`

)
− 2e`

(1− e`)2

)
e−(`2+(jπ)2)kt for ` > 0 . (28)

The component Z0(t) is the solution that originates from a once and for all shock to the money
supply. For instance a permanent increase of the money stock. This shock is analyzed in details in
Alvarez and Lippi (2022). The other two components of the aggregate response in equation (27)
capture the effect of the transitory shock W , affecting aggregate effect through its effect on the
firm’s optimal policy z∗ and z̄. Any combination of the two shocks can be analyzed. For instance
we can assume Z0(t) = 0 for all t, in which case we will focus on the effects of a transitory shock
without a long run effect. Finally we note that varying the value of ` allows us to consider different
economies, from Golosov Lucas to the Calvo model.
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A.2 Aggregate dynamics following the shock

The equilibrium path for Z(t) is readily obtained by replacing equation (25) and equation (26)
into equation (27). A straightforward application of proposition 7 in ALS gives

Zν,ω(t) = Zν
0 (t)−

∫ T

0

K(t, s)ω(s)ds all t ∈ [0, T ] (29)

where Zν
0 is given by equation (28) and where the kernel K is:

K(t, s) = (30)

4
∞∑
j=1

∞∑
i=1

[
Ā` − A∗` (−1)j+i

] [e[(jπ)2+(iπ)2+η2+`2]k(t∧s) − 1
]
e−(jπ)2kt−`2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2 + `2

with Ā` ≡ −m̃x(1) Ā < 0 and A∗` ≡ −m̃x(0
+)A∗ > 0, Ā < 0 and A∗ > 0 are constants introduced

above and m̃x(1) = − `2 e`

(1−e`)2 , m̃x(0
+) = − `2 (1+e2`

2(1−e`)2 , see Alvarez, Lippi, and Souganidis (2022).

From equation (2) the equilibrium path for output is then given by Y (t) ≡ δy(t) + o(δ) where

yν,ω(t) = ω(t)− Zν,ω(t) (31)

We summarize our main result as follows:

Proposition 2. Using equation (29) and equation (31) the output dynamics following a per-
manent shock of size δ and a transitory shock given by the sequence W (t) = δω(t) is given by
Y (t) = δy(t) + o(δ) where

y(t) = y0(t) + ω(t) +

∫ T

0

K(t, s)ω(s)ds (32)

This proposition is quite useful. It gives the output dynamics implied by a monetary shock made of

two components: a permanent one (δ), and a transitory one ω(t). The response to the permanent
component y0(t) = −Z0(t) was solved for in Alvarez and Lippi (2022) and given in equation (28).

The response to the transitory component, given by the second and third terms on the right
hand side of equation (32), is new. Next we use this result to discuss a few cases of interest.

A.3 The response to shocks with a transitory component

In this section we use Proposition 2 to analyze various cases of interest, with the final aim to
understand how the introduction of a transitory component affects the response to the shocks. First
we present an analytic solution for the case where transitory shock ω(t) follows an exponential path.
Second we analytically characterize the cumulative impulse response function (CIR) to analyze how
the presence of the transitory component affects the sufficient statistics result discussed in Alvarez,
Le Bihan, and Lippi (2016) and Baley and Blanco (2021). The sufficient statistic results of these
papers are derived under the assumption that the shock is permanent. We inspect the robustness
of the proposition as a function of the duration of the transitory shocks. The proposition continues
to hold (i.e. kurtosis over frequency is a sufficient statistic for the Calvo-plus models) when the
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half-life of the shock is small as well when it diverges (i.e. the shock is permanent). For the
intermediate cases we provide a bound on the accuracy of the proposition.

A transitory component with exponential decay. We consider a transitory shock parametrized
as ω(t) = ωoe

−γt. An immediate application of Proposition 2 gives

y(t) = yo(t) + wo

(
e−γt +

∫ T

0

K(t, s) e−γs ds

)
(33)

where yo(t) ≡ −Z0(t), the response to the permanent shock which was given in equation (28).
Since K(t, s) also involves terms that have an exponential decay in time, we can solve this

impulse response in closed form. To slightly simplify the algebra we focus on the case with zero
discounting ρ→ 0 (so that `2 = η2 = ζ/k) and an infinite horizon T →∞ (see the proof for details
and more general cases). We have the following result

Proposition 3. Consider T →∞ and ρ→ 0 and a transitory shock ω(t) = ω0e
−γt. We have:

y(t) = yo(t) + wo e
−γt

1 + 4
∞∑
j=1

∞∑
i=1

k
[
Ā` − A∗` (−1)j+i

] (
1− e−[(jπ)2+`2]kt+γt

)
((jπ)2k + `2k − γ) ((iπ)2k + `2k + γ)

 (34)

where Ā` and A∗` are constants defined above.

It is convenient to write the infinite sums using Euler’s formula as follows

y(t) = yo(t) + wo e
−γt

+ wo 4Ā`

[√
`2 + γ/k coth(

√
`2 + γ/k)− 1

2(`2 + γ/k)

]
∞∑
j=1

(
e−γt − e−[(jπ)2+`2]kt

)
((jπ)2k + `2k − γ)

− wo 4A∗`

[√
`2 + γ/k csch(

√
`2 + γ/k)− 1

2(`2 + γ/k)

]
∞∑
j=1

(
e−γt − e−[(jπ)2+`2]kt

)
(−1)j

((jπ)2k + `2k − γ)
(35)

The proposition is useful. It allows us to compute the impulse response in an efficient way and
to do comparative statics.

A.4 Proofs

Proof. (of Proposition 1) Now we compute the CIR. For that we define:

CIR =

∫ ∞
0

yo(t)dt+

∫ ∞
0

wo

(
e−γt +

∫ T

0

K(t, s) e−γs ds

)
dt

= CIR0 + wo

(
1

γ
+

∫ ∞
0

Q(t)dt

)
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We now compute
∫∞

0
Q(t)dt.∫ ∞

0

Q(t)dt = 4
∞∑
j=1

∞∑
i=1

[
Ā` − A∗` (−1)j+i

]
(jπ)2 + (iπ)2 + η2 + `2

∫ ∞
0

k∞i,j(t) dt

where

k∞i,j(t) =
[
e−γt − e−[(jπ)2+`2]kt

] [
(jπ)2 + (iπ)2 + η2 + `2

] [ k

[(jπ)2k + `2k − γ] [(iπ)2k + η2k + γ]

]
Thus, after tedious algebra∫ ∞

0

Q(t)dt = 4
∞∑
j=1

∞∑
i=1

[
Ā` − A∗` (−1)j+i

] k
γ

1

([(iπ)2 + η2] k + γ)

1

([(jπ)2 + `2]k)

Proof. (of Proposition 3). The transitory component of output is the sum of two parts: woe
−γt +

woQ(t) where

Q(t) = 4
∞∑
j=1

∞∑
i=1

[
Ā` − A∗` (−1)j+i

] ∫ T

0

[
e[(jπ)2+(iπ)2+η2+`2]k(t∧s) − 1

]
e−(jπ)2kt−`2kt−(iπ)2ks−η2ks−γs

(jπ)2 + (iπ)2 + η2 + `2
ds

Next we solve for Q(t) analytically. Define

ki,j(t) ≡
∫ T

0

[
e[(jπ)2+(iπ)2+η2+`2]k(t∧s) − 1

]
e−(jπ)2kt−`2kt−(iπ)2ks−η2ks−γsds

so that

Q(t) = 4
∞∑
j=1

∞∑
i=1

[
Ā` − A∗` (−1)j+i

]
(jπ)2 + (iπ)2 + η2 + `2

ki,j(t)

Note that

ki,j(t) ≡
∫ t

0

[
e[(jπ)2+(iπ)2+η2+`2]ks − 1

]
e−(jπ)2kt−`2kt−(iπ)2ks−η2ks−γsds

+

∫ T

t

[
e[(jπ)2+(iπ)2+η2+`2]kt − 1

]
e−(jπ)2kt−`2kt−(iπ)2ks−η2ks−γsds

After tedious algebra (integrating and collecting terms) we can write

ki,j(t) =
e−γt − e−[(jπ)2+`2]kt

[(jπ)2 + `2]k − γ

− e−[(iπ)2k+η2k+γ]T+[(iπ)2+η2]kt − e−γt

(iπ)2k + η2k + γ

+
e−[(iπ)2k+η2k+γ]T−[(jπ)2+`2]kt − e−[(jπ)2+`2]kt

(iπ)2k + η2k + γ
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When T →∞ we have

k∞i,j(t) =
e−γt − e−[(jπ)2+`2]kt

(jπ)2k + `2k − γ
+
e−γt − e−[(jπ)2+`2]kt

(iπ)2k + η2k + γ
.

B FAVAR estimation

The Factor Augmented Vector Autoregression (FAVAR) was originally developed by Bernanke,
Boivin, and Eliasz (2005) and by Boivin, Giannoni, and Mihov (2009). Stock and Watson (2016)
provide also a clear explanation of the model.

Let it be a vector of observable economic variables with dimension M x 1, M ≥ 1, and let F̃t
be a vector of unobserved factors with dimension K x 1, K ≥ 1.36 Assume that the dynamics of

the economy is driven by (Y ′t , F̃t
′
) which follows the transition equation:[

F̃t
it

]
= Φ(L)

[
F̃t−1

it−1

]
+ vt (36)

where Φ(L) is a lag polynomial of finite order and vt is an error term with zero mean and co-
variance matrix Q. While equation (36) has a VAR form, given that Ft is unobserved we cannot
directly estimate equation (36). However, the factors F̃t are interpreted as representing forces that
potentially affect many economic variables from which we can estimate the factors. Indeed, assume
that a large number of time series Xt, called informational time series, are related to the observed
variables it and to the unobservable factors F̃t by the following equation:

Xt = ΛFt + et (37)

where Ft ≡ [F̃t it]
′ and et is a vector N x 1 of error terms with zero mean.37 Notice that the

number of informational time series, N , must be large which means N is much larger than the
number of variables that drives the economy (Ft and it), i.e. N > K +M , and potentially N can
be larger than the number of observations in the time dimension, T . Moreover, notice that Ft can
always capture arbitrary lags of fundamental factors, thus it is not restrictive to assume that Xt

depends only on the current values of the factors.38

Under the above assumptions, it is possible to estimate the model, using a two-step approach.39

In the first step, the common factors are estimated extracting the first K principal components,
Ĉ(0), from the information variables, Xt. Indeed, as shown by Stock and Watson (2002), for
N large enough and if the number of principal components used is as least as large as the true
number of factors, the principal components of Xt span the space generated by the factors F̃ and
the observable variables it; thus, the principal components represent independent but arbitrary
linear combinations of F̃t and it. However, we want that these combinations do not depend on
it and that they are only independent combinations of the factors. For this reason, the factors
are estimated as follows. Regress Xt on Ĉ(0) and it to obtain B̂

(0)
r , the coefficient of it. Then

compute X̃
(0)
t = Xt− B̂(0)

r it and estimate Ĉ(1) as the first K principal components of X̃
(0)
t . Iterate

36We adopt the notation ’it’ as in our application the observable factor reduces to the interest rate.
37If factors are estimated using a principal components analysis, errors can display a small amount of cross-

correlation that must vanish as N goes to infinity. See Stock and Watson (2002) for a detailed discussion.
38For this reason Stock and Watson (1999) refer to equation (37) as a dynamic factor model.
39An alternative to estimate the model is to use a single-step Bayesian likelihood approach.
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until convergence of B̂
(i)
r to obtain the desired estimated factors, ˆ̃Ft. The second step consists

in estimating equation (36) as a structural VAR40, replacing Ft with their estimated counterpart

F̂t ≡ [ ˆ̃Ft it]
′. Indeed, we can rewrite equation (36) as

F̂t = Φ(L)F̂ t− 1 + vt (38)

where F̂+
t ≡ [F̂t it]

′. Assuming vt = Hεt, it is clear that equation (38) can be treated as a structural
VAR.
The final step we are interested in is to estimate the IRFs of Xt. Consider again equation (38) and
assume that the MA representation exists. Denoting the MA coefficient with Ψ(L), we obtain

F̂t = Ψ(L)Hεt (39)

Moreover, using F̂t instead of Ft in equation (37) and replacing in this equation equation (39), we
get

Xt = ΛΨ(L)−1Hεt + et (40)

Equation (40) links the information variables, Xt, to the shocks and provides the theoretical
framework to retrieve the IRFs of Xt. However, in practice, the IRFs of Xt are not estimated

using the MA representation and, thus, equation (40). Indeed, let ̂IRF (A) be the estimated IRFs
of the time series At to a given shock. The IRFs of Xt is calculated as

̂IRF (X) = β̂ ∗ ̂IRF (F̂ ) (41)

where ̂IRF (F̂ ) is the VAR estimated IRF of F̂t and β̂ is the estimated coefficient of the regression
of Xt on F̂t.

Details on variables in the FAVAR We include three types of “informative time series” in
vector Xt: (i) macroeconomic data for France including aggregate industrial production, aggregate
producer price index (PPI), the aggregate harmonized index of consumer prices (HICP), unemploy-
ment rate, (ii) financial and monetary variables relevant for the euro area including the monetary
aggregate M3 in the euro area, the value of banknotes in circulation in the euro area, the euro
exchange rate with respect to US dollar, yen, UK pound sterling, Swiss franc, Chinese Yuan Ren-
minbi (iii) highly disaggregated French series of industrial production indices (IPI), producer price
indices (PPI) and consumer price indices (CPI), as well as some available disaggregated series for
monthly consumption (16 broad categories of consumptions at an intermediate aggregation level,
including, for instance, durables consumption, manufacturing goods consumption). As regards
product-specific monthly price series, CPI price indices are available at the 5-digit level of the
ECOICOP classification (e.g. ‘01.1.1.1’ ‘Rice’) whereas PPI price indices in the manufacturing
sector are available at the 4-digit level of the NACE rev2 classification of sectors (e.g. ‘08.11’
‘Quarrying of ornamental and building stone, limestone, gypsum, chalk and slate’). Overall, we
use 223 product-specific consumer price indices covering both goods and services and 118 producer
price indices covering the manufacturing sector.

40In our application, we estimate the structural VAR using a Cholesky decomposition. However, any other
approach can be used.
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C A Filter for the Euribor

Our empirical goal is to estimate a monetary shock characterized by a transient impact on inflation
and output. We filter the 3-month Euribor so as to ensure this property, as with unfiltered data
it is not fulfilled. One possible reason why it is not fulfilled (unlike in typical VAR) is because
in our sample period, on the euro area, this variable is not stationary, as depicted in Figure A.1.
We exploit two criteria to choose the value of the one-sided HP filter, λHP . Both criteria are
based on the behavior of the IRFs of PPI and CPI time series as λHP varies. We estimated
the FAVAR model, for alternative values of filtered Euribor rates letting the one-sided HP filter
parameter, λHP , vary from 6 to 4 ∗ 106. Furthermore, we retrieve the sectorial IRF using the
Cholesky decomposition or the high frequency identification, both without imposing a long run
restriction.

One first criterion considers the number of negative IRFs of PPI or CPI after three years, since
our strong prior is that after a contractionary monetary shock, prices should decline as compared
to the no-shock baseline. Thus, we are interested in estimating a FAVAR that is in line with
this prediction. The top panel of Figure A.2 shows our finding under the Cholesky decomposition
assumption: the blue (orange) line reports the percentage of PPI (CPI) sector with a negative
IRF after three years. Both for PPI and CPI, the share of negative IRFs is maximized around
the value of λHP of 500k. For λHP =500k we have around 60% of the sectors with negative IRF.
Moreover, this curve is very flat for values grater than 500k and, indeed, all the results in paper
are robust when using an higher value of the filter.

As a second criterion to guide our choice of λHP , we consider the arithmetic average price
response of PPI or CPI products to the contractionary monetary shock after three years as a
function of λHP . We expect that these two aggregate IRFs have negative values. The blue line in
the botton panel of Figure A.2 shows that the average sectorial response of PPI is negative only for
values λHP above 55k. Futhermore, for values larger than 55k also the average sectoral response
of CPI is negative (orange line in the bottom panel of Figure A.2).

Figure A.3 reports the same statistics as Figure A.2. In this case, however, the monetary shock
is identified using the instrumental variable approach. In the top panel, the blue (resp. orange)
line reports the share of PPI (resp. CPI) products with a negative IRF after three years. Both
lines have two maximum. The first maximum is for the value of 85k of the filter. The other one
is for a value of 6. We select the value of 85k since for this value, the number of sectors with
a negative IRF after three years is quite unaffected by small changes of the one-sided HP filter
(which is less true for a value of 6).41 Finally, the bottom panel of Figure A.3 reports the arithmetic
average response of PPI or CPI sectors to the contractionary monetary shock after three years as
a function of λHP . The blue (orange) line shows the average sectorial response of PPI (CPI). Both
lines are negative for values of the one-sided HP filter close to 85k. For these reason, we choose
85k as our optimal value for λHP .

41We have also estimated our FAVAR and regressions using a value of 6 for the one-sided HP filter. The results
are very close to the value of 85k.
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Figure A.1: 3-month Euribor: period 2005-2019

Figure A.2: Response of sectoral PPI and CPI as a function of λHP - Shock identified with Cholesky

Top panel: the blue (orange) line reports the percentage of PPI (CPI) sectors with a negative IRF after three years
to a contractionary monetary shock as a function of the one-sided HP filter parameter, λHP . Bottom panel: the
blue (orange) line reports sectoral IRF of production (consumer) prices to a contractionary monetary shock as a
function of the one-sided HP filter parameter. The monetary shock is identified using the Cholesky decomposition.
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Figure A.3: Response of sectoral PPI and CPI as a function of λHP - Shock identified with IV

Top panel: the blue (orange) line reports the percentage of PPI (CPI) sectors with a negative IRF after three
years to a contractionary monetary shock as a function of the one-sided HP filter parameter, λHP . Bottom panel:
the blue (orange) line reports sectoral IRF of production (consumer) prices to a contractionary monetary shock as
a function of the one-sided HP filter parameter. The monetary shock is identified using the IV approach.
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Figure A.4: Aggregate response to a contractionary monetary policy shock (Cholesky - Long-run
restriction)

y-axis: log points in deviation from the ”steady state”.
Top panel: 3-month Euribor impulse response function (IRF). Top right panel: production index IRF. Bottom left
panel: production price index IRF. Bottom right panel: IRF of the harmonized index of consumer prices
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Table A.1: Product-specific CIRP : Descriptive Statistics

Moments of the CIR distribution
Mean Std. Dev. min 5% 25% 50% 75% 95% max

PANEL A: PRODUCER PRICES
Cholesky - Long-run restriction
24 months -9.17 15.43 -95.73 -50.66 -8.71 -5.95 -3.11 0.86 17.04
36 months -18.95 19.01 -140.67 -55.00 -18.37 -14.72 -11.45 -4.32 6.59
48 months -29.07 20.08 -163.08 -58.73 -28.53 -24.71 -21.05 -12.93 -2.98

Cholesky - No long-run restriction
24 months -9.17 36.01 -238.29 -53.69 -9.36 -2.08 3.92 15.43 32.32
36 months -18.95 64.43 -436.04 -101.12 -27.54 -5.61 5.97 30.38 66.78
48 months -29.07 98.22 -658.55 -173.34 -41.50 -8.22 6.89 50.37 111.84

High Frequency Instrument - Long-run restriction
24 months -12.31 8.49 -56.38 -27.16 -12.93 -11.00 -8.60 -3.67 6.07
36 months -25.86 16.20 -114.59 -54.08 -27.23 -22.26 -18.09 -9.64 7.40
48 months -37.87 18.63 -133.72 -70.84 -41.06 -34.05 -28.96 -17.39 13.03

PANEL B: CONSUMER PRICES
Cholesky - Long-run restriction
24 months -7.17 12.44 -90.86 -29.56 -9.05 -4.64 -1.59 4.99 14.28
36 months -16.62 16.95 -139.36 -42.85 -16.88 -12.18 -9.21 -5.05 0.91
48 months -27.15 19.27 -163.72 -55.56 -27.29 -21.59 -19.03 -14.14 -5.79

Cholesky - No long-run restriction
24 months -7.17 24.58 -201.17 -42.07 -11.77 -3.75 1.96 18.09 46.28
36 months -16.62 46.08 -367.90 -85.59 -28.63 -12.27 3.22 35.76 105.13
48 months -27.15 71.43 -547.10 -125.41 -47.64 -23.07 5.16 57.02 184.05

High Frequency Instrument - Long-run restriction
24 months -11.60 8.64 -101.25 -25.89 -11.98 -9.81 -8.36 -5.54 3.18
36 months -22.65 13.04 -142.21 -47.50 -23.09 -19.93 -17.73 -13.57 -2.56
48 months -34.41 14.79 -164.47 -63.69 -35.71 -31.19 -28.28 -22.65 -11.09

Note: this table reports descriptive statistics on the distribution of the product-specific CIR of prices obtanied from

the the different FAVAR specifications and at 24-, 36- and 48-month horizons (expressed in %). These statistics are

computed over 118 products for PPI and 223 products for CPI.
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D OLS regressions - Additional Results and Robustness

Table A.2: Testing Model’s Predictions

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: PRODUCER PRICES

Constrained model
P-val β = 1/6 0.598 0.358 0.129 0.713 0.736 0.568
P-val α = −T 0.080 0.000 0.671 0.795 0.617 0.215

Unconstrained model
P-val βf = −βk 0.720 0.621 0.897 0.383 0.790 0.916

P-val βf = − K̄
6F̄

0.355 0.758 0.122 0.710 0.528 0.745

P-val βk = K̄
6F̄

0.302 0.722 0.177 0.218 0.430 0.875

PANEL B: CONSUMER PRICES

Constrained model
P-val β = 1/6 0.000 0.000 0.001 0.092 0.000 0.000
P-val α = −T 0.000 0.000 0.004 0.000 0.000 0.000

Unconstrained model
P-val βf = −βk 0.469 0.000 0.0136 0.000 0.417 0.005

P-val βf = − K̄
6F̄

0.807 0.008 0.040 0.002 0.037 0.164

P-val βk = K̄
6F̄

0.057 0.002 0.121 0.001 0.000 0.000

Note: we report p-values of Wald tests performed on the parameters of our baseline OLS regressions presented in

Table 2 and Table 2. These tests correspond to model’s predictions presented in equation (13) and equation (14).

We perform three different tests: (i) in the constrained version of the model we test whether β (parameter

associated with the ratio Kurt/Freq is equal to −δ/6 (where δ is the MP shock here normalised to 1%); and (ii)

in the unconstrained model, we test whether the parameter associated with frequency (βf ) is equal to minus the

parameter associated with kurtosis (−βk); (iii) in the unconstrained version, we also perform tests on the

parameter associated with frequency and kurtosis, they are predicted to be equal to K̄
6F̄

where K̄ and F̄ are

sample averages of kurtosis and frequency.
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Table A.3: Regression Results - Placebo Unconstrained Specification

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: PRODUCER PRICES
Freq/F̄ -7.498** -3.582 -23.41* -9.097 -6.106* -2.884

(3.649) (2.704) (13.21) (11.35) (3.279) (2.849)

Kurt/K̄ 6.563 6.835 12.28 23.25 6.534* 5.083
(4.412) (6.460) (14.37) (24.11) (3.504) (6.340)

Mean -1.201 -0.947 -11.27* -4.153 -0.859 1.682
(1.578) (1.792) (6.648) (8.094) (1.359) (1.695)

Skewness -1.352 -2.953 -13.16 -0.718 -2.321 -3.039
(4.615) (5.243) (17.37) (22.96) (2.548) (4.225)

SD -1.571 1.116 -8.880 -0.846 -0.140 2.599
(3.092) (3.222) (11.23) (12.24) (2.501) (2.692)

Constant -10.92 -22.10 34.34 -31.53 -25.66* -39.45**
(17.21) (19.41) (61.81) (72.23) (14.43) (18.50)

Observations 118 118 118 118 118 118
R2 0.214 0.556 0.182 0.485 0.207 0.480

PANEL B: CONSUMER PRICES
Freq/F̄ -8.213*** -12.28*** -25.75*** -31.41*** -5.838*** -6.737***

(2.957) (1.633) (7.247) (5.855) (1.520) (1.010)

Kurt/K̄ 1.136 0.555 13.11 9.327 1.554 2.852
(2.487) (2.407) (8.805) (8.260) (1.684) (1.938)

Mean -0.302 0.637 -3.952** -1.238 -0.615* 0.269
(0.489) (0.552) (1.724) (1.690) (0.353) (0.339)

Skewness 6.062** 5.900** 12.70 4.792 3.738** 3.362*
(2.511) (2.836) (8.709) (9.391) (1.526) (1.864)

SD -1.137 -0.296 2.980 4.881* -0.759 0.389
(0.714) (0.776) (2.144) (2.582) (0.662) (0.567)

Constant 1.032 11.09 -18.45 -11.95 -10.89 -15.16**
(8.281) (8.526) (26.16) (30.05) (7.000) (6.076)

Observations 223 223 223 223 223 223
R2 0.240 0.730 0.336 0.601 0.206 0.800

Note: this table reports results of OLS regressions (equation (14)) where the dependent variable is the product-

specific CIR
Pj

T (calculated for the horizon T=36 months and expressed in %) and the right-hand-side variables

include the ratio of the product-level frequency over its average Freq/F̄ and the ratio of the product-level kurtosis

over its average Kurt/K̄, but also three other moments of the product-specific price change distribution: the

average price change Mean, the skewness of price changes Skewness, and the standard deviation of price changes

StandardDev.. Product fixed effects are defined at the 2-digit level for both CPI and PPI products (i.e. 38 product

fixed effects for the CPI, and 24 in the case of the PPI). Robust standard errors are reported in parentheses. Robust

standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A.4: Regression Results: Role of sales - Consumer Prices - Placebo

Case 1: Excluding food, Case 2: Products with % of sales
clothing/footwear, furnishings prices below the median

Identification Cholesky Cholesky High-Freq. IV Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes Yes No Yes

Kurt/Freq 0.0504** 0.189** 0.0513*** 0.0456** 0.174*** 0.0473***
(0.0244) (0.0755) (0.0181) (0.0226) (0.0656) (0.0157)

Mean 0.480 -3.646* -0.472 0.161 2.199 -0.164
(0.392) (1.987) (0.454) (0.401) (1.786) (0.402)

Skewness 3.791 12.03 2.415 3.485 11.61 2.056
(2.554) (9.000) (2.001) (3.024) (9.771) (2.549)

SD 0.686 4.725* -0.0624 0.657 4.943* -0.592
(0.845) (2.502) (0.675) (0.983) (2.670) (0.963)

Constant -26.75*** -58.79** -26.16*** -24.14** -72.92*** -23.20***
(9.230) (27.31) (5.673) (9.505) (26.55) (6.274)

Observations 134 134 134 111 111 111
R2 0.076 0.118 0.079 0.054 0.134 0.090

Note: This table reports OLS results of the constrained model (equation (13)) for CPI products relating product-

specific CIR
Pj

T (calculated for the horizon T=36 months and expressed in %) to the ratio Kurt/freq and OLS

results of the unconstrained model (equation (14)) relating product-specific CIR
Pj

T (expressed in %) to the ratio

of the product-level frequency over its average Freq/F̄ and the ratio of the product-level kurtosis over its average

Kurt/K̄. In Case 1, we have removed goods of three broad sectors where sales concentrate (COICOP01.1 Food,

COICOP03 Clothing/Footwear, and COICOP05 Furnishing goods). In Case 2, we have removed products for which

the share of sales and promotions represent more than 11% of all price changes (this threshold corresponds to the

median of this ratio over all CPI products). Robust standard errors are reported in parentheses. *** p<0.01, **

p<0.05, * p<0.1
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Table A.5: Baseline OLS Regression Results : Kurtosis alone - Frequency alone

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: Producer Prices - Kurtosis alone
Kurt/K̄ 9.148** 5.240 25.05 20.11 7.305* 3.396

(4.435) (3.717) (15.44) (13.07) (3.761) (3.374)

Constant -28.10*** -17.99*** -44.00** -43.18*** -33.17*** -25.05***
(5.836) (3.412) (20.46) (12.98) (4.780) (5.934)

R2 0.031 0.521 0.020 0.469 0.027 0.421

PANEL B: Producer Prices - Freq. alone
Freq/F̄ -7.404** -3.613 -22.45* -7.926 -6.272** -3.551

(3.242) (2.463) (11.83) (10.28) (2.873) (2.537)

Constant -11.55*** -10.79*** 3.500 -19.65*** -19.59*** -19.55***
(2.463) (2.717) (9.020) (7.224) (2.181) (6.535)

R2 0.182 0.545 0.146 0.474 0.180 0.457
Observations 118 118 118 118 118 118

PANEL C: Consumer Prices - Kurtosis alone
Kurt/K̄ 5.567*** 5.097** 5.023 1.868 4.120*** 3.839**

(1.853) (2.111) (3.424) (3.757) (1.282) (1.532)

Constant -22.19*** -15.00*** -21.65*** -18.76*** -26.77*** -24.02***
(2.476) (2.280) (5.558) (5.575) (1.922) (1.592)

R2 0.037 0.441 0.004 0.322 0.034 0.649

PANEL D: Consumer Prices - Freq. alone
Freq/F̄ -7.453*** -12.27*** -23.68*** -30.84*** -5.134*** -6.823***

(2.799) (1.467) (7.510) (6.122) (1.401) (0.923)

Constant -9.170*** 8.599*** 7.053 30.76*** -17.52*** -9.996***
(2.691) (2.430) (6.920) (9.680) (1.386) (1.476)

R2 0.188 0.716 0.257 0.575 0.151 0.784
Observations 223 223 223 223 223 223

Note: This table reports OLS results of a model (equation (13)) relating product-specific CIR
Pj

T (expressed in %)

to the ratio of the product-level kurtosis over its average Kurt/K̄ and OLS results of a model (equation (14))

relating product-specific CIR
Pj

T (expressed in %) to the ratio of the product-level frequency over its average

Freq/F̄ . Product fixed effects are defined at the 2-digit level for both CPI and PPI products (i.e. 38 product

fixed effects for the CPI, and 24 in the case of the PPI). Robust standard errors are reported in parentheses. ***

p<0.01, ** p<0.05, * p<0.1
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Table A.6: Baseline OLS Regression Results : “Constrained” Specification - 24-month horizon

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: PRODUCER PRICES

Kurt/Freq 0.141** 0.0761* 0.304** 0.132 0.0763** 0.0620**
(0.0577) (0.0442) (0.137) (0.0966) (0.0330) (0.0299)

Constant -15.31*** -6.978*** -22.41** -14.86*** -15.63*** -12.41**
(3.649) (2.580) (8.686) (3.799) (2.009) (4.910)

Observations 118 118 118 118 118 118
R2 0.067 0.476 0.057 0.463 0.065 0.403

PANEL B: CONSUMER PRICES

Kurt/Freq -0.00926 0.0263** 0.00510 0.0511** 0.00182 0.0192**
(0.0107) (0.0112) (0.0216) (0.0238) (0.00697) (0.00761)

Constant -6.332*** -1.102 -7.627** -5.092** -11.76*** -9.189***
(1.479) (1.148) (3.101) (2.029) (1.060) (0.572)

Observations 223 223 223 223 223 223
R2 0.004 0.427 0.000 0.326 0.000 0.713

Note: this table reports results of OLS regressions (equation (13)) where the dependent variable is the

product-specific CIR
Pj

T (calculated for the horizon T=24 months, and expressed in %) and the right-hand-side

variable is the ratio Kurt/freq. Each observation corresponds to a disaggregate CPI or PPI product. For CPI,

the level of disaggregation is 5 digit-level of the ECOICOP classification (ie. ‘01.1.1.1’) whereas for PPI, the

product level is the 4-digit level of the NACE rev2 classification of sectors. PPI covers the manufacturing sectors

whereas CPI covers about 60% of the whole French CPI (main products excluded are rents, cars, utilities like

electricity). Product fixed effects are defined at the 2-digit level for both CPI and PPI products (i.e. 38 product

fixed effects for the CPI, and 24 in the case of the PPI). Robust standard errors are reported in parentheses. ***

p<0.01, ** p<0.05, * p<0.1
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Table A.7: Regression Results - “Unconstrained” Specification - 24-month horizon

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: PRODUCER PRICES
Freq/F̄ -5.284** -2.862 -12.52** -5.056 -3.038** -2.165*

(2.406) (2.055) (6.226) (5.549) (1.362) (1.227)

Kurt/K̄ 6.869** 4.786 14.26* 12.29 3.439* 2.208
(3.436) (3.101) (8.217) (7.601) (1.786) (1.862)

Constant -10.76*** -6.321* -10.92 -17.26** -12.71*** -10.47**
(3.764) (3.362) (8.839) (7.317) (1.726) (4.791)

Observations 118 118 118 118 118 118
R2 0.169 0.499 0.167 0.481 0.177 0.436

PANEL B: CONSUMER PRICES
Freq/F̄ -4.553** -8.613*** -12.43*** -17.80*** -2.032** -3.338***

(2.149) (1.135) (4.400) (3.281) (0.815) (0.491)

Kurt/K̄ 3.223** 2.147* 2.045 -1.007 2.371*** 2.090***
(1.291) (1.275) (1.802) (1.920) (0.842) (0.789)

Constant -5.837** 11.16*** 3.219 25.02*** -11.93*** -5.280***
(2.624) (2.504) (4.787) (5.839) (1.328) (1.107)

Observations 223 223 223 223 223 223
R2 0.161 0.700 0.254 0.607 0.085 0.803

Note: this table reports results of OLS regressions (equation (14)) where the dependent variable is the product-

specific CIR
Pj

T (calculated for the horizon T=24 months, and expressed in %) and the right-hand-side variables are

the ratio of the product-level frequency over its average Freq/F̄ and the ratio of the product-level kurtosis over

its average Kurt/K̄. Product fixed effects are defined at the 2-digit level for both CPI and PPI products (i.e. 38

product fixed effects for the CPI, and 24 in the case of the PPI). Robust standard errors are reported in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table A.8: Baseline OLS Regression Results : “Constrained” Specification - 48-month horizon

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: PRODUCER PRICES

Kurt/Freq 0.222*** 0.127** 0.788** 0.320 0.208*** 0.152**
(0.0795) (0.0577) (0.373) (0.269) (0.0727) (0.0635)

Constant -38.74*** -28.64*** -63.41*** -56.04*** -46.91*** -40.34***
(4.848) (3.144) (23.63) (11.20) (4.361) (7.392)

Observations 118 118 118 118 118 118
R2 0.099 0.548 0.052 0.457 0.100 0.419

PANEL B: CONSUMER PRICES

Kurt/Freq -0.000340 0.0494*** 0.0496 0.136** 0.0172 0.0387***
(0.0172) (0.0168) (0.0606) (0.0663) (0.0122) (0.0134)

Constant -27.12*** -22.87*** -31.63*** -36.74*** -35.97*** -34.58***
(2.146) (1.251) (8.891) (7.628) (1.750) (0.944)

Observations 223 223 223 223 223 223
R2 0.000 0.454 0.003 0.333 0.009 0.643

Note: this table reports results of OLS regressions (equation (13)) where the dependent variable is the

product-specific CIR
Pj

T (calculated for the horizon T=48 months, and expressed in %) and the right-hand-side

variable is the ratio Kurt/freq. Each observation corresponds to a disaggregate CPI or PPI product. For CPI,

the level of disaggregation is 5 digit-level of the ECOICOP classification (ie. ‘01.1.1.1’) whereas for PPI, the

product level is the 4-digit level of the NACE rev2 classification of sectors. PPI covers the manufacturing sectors

whereas CPI covers about 60% of the whole French CPI (main products excluded are rents, cars, utilities like

electricity). Product fixed effects are defined at the 2-digit level for both CPI and PPI products (i.e. 38 product

fixed effects for the CPI, and 24 in the case of the PPI). Robust standard errors are reported in parentheses. ***

p<0.01, ** p<0.05, * p<0.1
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Table A.9: Regression Results - “Unconstrained” Specification - 48-month horizon

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: PRODUCER PRICES
Freq/F̄ -7.948** -3.895 -33.08* -11.52 -6.667** -3.711

(3.393) (2.523) (17.65) (15.73) (3.320) (3.104)

Kurt/K̄ 9.160** 5.866 34.86 31.95 7.151* 3.654
(4.521) (3.968) (22.02) (20.91) (3.713) (3.827)

Constant -30.28*** -26.23*** -30.85 -64.25*** -38.35*** -35.09***
(4.707) (3.988) (23.51) (20.66) (3.775) (6.830)

Observations 118 118 118 118 118 118
R2 0.217 0.565 0.154 0.471 0.175 0.421

PANEL B: CONSUMER PRICES
Freq/F̄ -8.086*** -13.23*** -35.47*** -45.14*** -5.689*** -7.191***

(3.098) (1.686) (11.06) (9.409) (1.530) (1.087)

Kurt/K̄ 5.669*** 3.676** 1.578 -7.284 4.129*** 3.153**
(1.942) (1.788) (6.047) (5.400) (1.299) (1.270)

Constant -24.74*** -4.089 6.738 44.08** -32.85*** -25.04***
(4.055) (3.481) (12.79) (16.97) (2.345) (2.158)

Observations 223 223 223 223 223 223
R2 0.211 0.719 0.241 0.545 0.179 0.774

Note: this table reports results of OLS regressions (equation (14)) where the dependent variable is the product-

specific CIR
Pj

T (calculated for the horizon T=48 months, and expressed in %) and the right-hand-side variables are

the ratio of the product-level frequency over its average Freq/F̄ and the ratio of the product-level kurtosis over

its average Kurt/K̄. Product fixed effects are defined at the 2-digit level for both CPI and PPI products (i.e. 38

product fixed effects for the CPI, and 24 in the case of the PPI). Robust standard errors are reported in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table A.10: Regression Results: Kurtosis Measurement - Heterogeneity

PRODUCER PRICES CONSUMER PRICES
Identification Cholesky Cholesky High-Freq. IV Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes Yes No Yes
PANEL A: Constrained model
Kurt/Freq 0.222*** 0.511* 0.205*** -0.00105 0.0306 0.0114

(0.0801) (0.269) (0.0722) (0.0135) (0.0364) (0.00972)

Constant -26.47*** -36.24** -32.78*** -16.56*** -18.57*** -23.38***
(4.076) (13.94) (3.511) (1.562) (4.593) (1.278)

R2 0.078 0.036 0.091 0.000 0.002 0.004

PANEL B: Unconstrained model
Freq/F̄ -7.305** -22.38* -6.200** -7.300** -23.55*** -5.017***

(3.206) (11.77) (2.856) (2.843) (7.568) (1.419)

Kurt/K̄ 4.097** 2.870 2.951* 3.998*** 3.252 3.045***
(1.655) (5.376) (1.525) (1.442) (3.818) (1.020)

Constant -15.75*** 0.560 -22.61*** -13.32*** 3.676 -20.68***
(2.366) (8.067) (2.055) (3.485) (8.574) (1.996)

R2 0.194 0.146 0.189 0.207 0.258 0.169
Observations 118 118 118 223 223 223

Note: This table reports OLS results of the constrained model (equation (13)) relating product-specific CIR
Pj

T

(expressed in %) to the ratio Kurt/freq and OLS results of the unconstrained model ( equation (14)) relating

product-specific CIR
Pj

T (expressed in %) to the ratio of the product-level frequency over its average Freq/F̄ and

the ratio of the product-level kurtosis over its average Kurt/K̄. The measure of kurtosis takes into account for

possible product heterogeneity following the methodology in Alvarez, Lippi, and Oskolkov (2022) and using S = 5

(see Appendix D). Product-fixed effects are not included. Robust standard errors are reported in parentheses. ***

p<0.01, ** p<0.05, * p<0.1
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Table A.11: Regression Results: 2-year German Bond - High-Frequency IV

PRODUCER PRICES CONSUMER PRICES
Long-run Restriction Yes Yes
Sector FE No Yes No Yes
PANEL A: Constrained model
Kurt/Freq 0.255*** 0.123* 0.0191*** 0.0114

(0.0765) (0.0704) (0.00603) (0.00710)

Constant -32.05*** -21.32*** -15.51*** -17.70***
(4.607) (3.599) (0.987) (1.083)

R2 0.117 0.332 0.001 0.435

PANEL B: Unconstrained model
Freq/F̄ -6.550** -1.951 -4.635*** -4.929***

(2.974) (3.040) (0.851) (0.811)

Kurt/K̄ 7.542* 3.040 0.790 -0.421
(4.174) (4.880) (0.572) (0.834)

Constant -21.96*** -17.86*** -9.936*** -9.317***
(4.974) (5.509) (1.021) (1.505)

R2 0.133 0.324 0.343 0.546
Observations 118 118 223 223

Note: This table reports OLS results of the constrained model (equation (13)) relating product-specific CIR
Pj

T

(expressed in %) to the ratio Kurt/freq and OLS results of the unconstrained model (equation (14)) relating

product-specific CIR
Pj

T (expressed in %) to the ratio of the product-level frequency over its average Freq/F̄ and

the ratio of the product-level kurtosis over its average Kurt/K̄. CIR of prices are here calculated using the 2-year

German bond rate as a policy rate and the model is identified using a high frequency instrument method. Robust

standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A.12: Regression Results: No drift - Sectoral Average Inflation< 5%

PRODUCER PRICES CONSUMER PRICES
Identification Cholesky Cholesky High-Freq. IV Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes Yes No Yes
Product FE No No No No No No
PANEL A: Constrained model
Kurt/Freq 0.193*** 0.499** 0.189*** -0.00425 0.0507 0.0136

(0.0734) (0.245) (0.0648) (0.0154) (0.0396) (0.0111)

Constant -26.76*** -37.59** -34.24*** -16.03*** -23.33*** -24.00***
(4.452) (15.20) (3.871) (2.069) (5.761) (1.669)

R2 0.100 0.059 0.111 0.000 0.009 0.007
PANEL B: Unconstrained model
Freq/F̄ -7.619** -23.58** -6.256** -7.259** -24.25*** -4.998***

(3.170) (11.65) (2.845) (2.841) (7.252) (1.401)

Kurt/K̄ 7.284* 17.85 7.197** 4.679*** 4.606 3.799***
(3.855) (13.12) (3.342) (1.730) (3.539) (1.259)

Constant -17.98*** -10.04 -26.90*** -13.84*** 1.009 -21.54***
(3.613) (12.31) (3.293) (3.600) (7.965) (2.135)

R2 0.254 0.208 0.205 0.214 0.311 0.181
Observations 116 116 116 214 214 214

Note: This table reports OLS results of the constrained model (equation (13)) relating product-specific CIR
Pj

T

(expressed in %) to the ratio Kurt/freq and OLS results of the unconstrained model (equation (14)) relating

product-specific CIR
Pj

T (expressed in %) to the ratio of the product-level frequency over its average Freq/F̄ and

the ratio of the product-level kurtosis over its average Kurt/K̄. We remove products for which the average annual

inflation is above 5% (in absolute values) over the sample period. Robust standard errors are reported in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table A.13: Regression Results: Aggregate Sectoral Fixed Effects

PRODUCER PRICES CONSUMER PRICES
Identification Cholesky Cholesky High-Freq. IV Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes Yes No Yes
PANEL A: Constrained model
Kurt/Freq 0.227*** 0.580** 0.215*** -0.0215 -0.0527 0.00200

(0.0712) (0.234) (0.0671) (0.0184) (0.0430) (0.0201)

Constant -28.95*** -40.43*** -37.77*** -8.687*** -15.96*** -20.09***
(4.180) (13.99) (4.856) (0.926) (3.933) (0.910)

R2 0.255 0.228 0.213 0.407 0.322 0.424
PANEL B: Unconstrained model
Freq/F̄ -8.099*** -23.18** -6.937** -7.855*** -19.66** -3.910**

(2.563) (9.943) (2.880) (2.497) (8.290) (1.592)

Kurt/K̄ 13.75** 46.93** 11.53*** 3.709** 3.206 3.760*
(5.439) (18.48) (4.329) (1.457) (3.012) (1.967)

Constant -26.10*** -44.83** -33.80*** -1.930 7.300 -18.24***
(5.609) (18.61) (5.211) (4.022) (12.56) (2.763)

R2 0.400 0.355 0.333 0.498 0.390 0.481
Observations 118 118 118 223 223 223

Note: This table reports OLS results of the constrained model (equation (13)) relating product-specific CIR
Pj

T

(expressed in %) to the ratio Kurt/freq and OLS results of the unconstrained model (equation (14)) relating

product-specific CIR
Pj

T (expressed in %) to the ratio of the product-level frequency over its average Freq/F̄ and

the ratio of the product-level kurtosis over its average Kurt/K̄. For CPI, 12 product fixed effects are included

corresponding to COICOP 1-digit product categories; for PPI, 6 product fixed effects are included (capital goods,

consumer goods (food), consumer goods (durable), consumer goods (other), intermediate goods, energy). Robust

standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A.14: Regression Results: Product level inflation - Production volatility

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes
PANEL A: PRODUCER PRICES
Kurt/Freq 0.184*** 0.100* 0.431** 0.171 0.179*** 0.134**

(0.0594) (0.0533) (0.183) (0.169) (0.0573) (0.0542)

Production volatility 0.0400 0.449 0.921 1.219 -0.0100 0.0562
(0.151) (0.277) (0.605) (1.073) (0.155) (0.264)

Average inflation -6.209* -4.401 -27.76** -21.08** -2.823 0.137
(3.322) (2.714) (10.94) (10.27) (2.658) (2.324)

Constant -20.41*** -12.88 -16.72 -2.428 -30.36*** -28.04***
(3.364) (8.025) (12.66) (24.46) (3.514) (8.201)

R2 0.225 0.580 0.282 0.549 0.147 0.452
Observations 118 118 118 118 118 118

PANEL B: CONSUMER PRICES
Kurt/Freq -0.00234 0.0415** 0.0604 0.108** 0.0161 0.0324**

(0.0174) (0.0161) (0.0443) (0.0455) (0.0126) (0.0126)

Average inflation 0.0165 0.0220 -4.328*** -3.026 -0.477 0.0810
(0.389) (0.459) (1.386) (1.880) (0.340) (0.299)

Constant -16.43*** -11.76*** -17.80*** -16.45*** -23.64*** -21.71***
(1.869) (1.159) (5.270) (4.866) (1.490) (0.714)

R2 0.000 0.439 0.066 0.345 0.016 0.649
Observations 223 223 223 223 223 223

Note: this table reports results of OLS regressions (equation (14)) where the dependent variable is the

product-specific CIR
Pj

T (calculated for the horizon T=36 months, and expressed in %) and the right-hand-side

variables include the product-specific ratio Kurt/freq but also, for CPI and PPI products, the average sectoral

CPI or PPI inflation (calculated as mean of the year-on-year growth in sectoral price indices (source Insee) over

the sample period) and for PPI, the volatility of the aggregate production (calculated as the standard deviation of

the year-on-year growth in sectoral production indices (source Insee) over the sample period). Product fixed

effects are defined at the 2-digit level for both CPI and PPI products (i.e. 38 product fixed effects for the CPI, and

24 in the case of the PPI). Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A.15: OLS Regression Results - CIR of Output - PPI products

Identification Cholesky Cholesky HFI
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: Constrained model

Kurt/Freq -0.373 -0.439 -0.144 -0.843 0.0446 -0.0200
(0.296) (0.343) (1.009) (1.146) (0.243) (0.329)

Constant -23.67** 42.45 -20.59 169.4*** 29.81*** 154.4***
(10.33) (26.61) (33.48) (46.82) (9.184) (15.71)

R2 0.027 0.240 0.000 0.201 0.000 0.187

PANEL B: Unconstrained model

Freq/F̄ 8.191** 8.649** -1.683 8.198 -0.181 1.809
(3.420) (3.468) (11.39) (9.728) (4.283) (5.671)

Kurt/K̄ -14.76 -16.70 -13.20 -21.27 -9.610 -27.84
(13.85) (17.69) (33.64) (51.75) (13.56) (20.16)

Constant -31.89** 35.20 -11.42 150.8*** 41.37** 178.1***
(16.08) (31.22) (39.24) (50.90) (16.18) (22.24)

R2 0.025 0.236 0.001 0.194 0.002 0.198
Observations 156 156 156 156 156 156

Note: this table reports results of OLS regressions testing equation (5) where the dependent variable is the

product-specific CIR
Yj

T (expressed in %) and the right-hand-side variable are the ratio Kurt/freq (Panel A) or

the ratio of the product-level frequency over its average Freq/F̄ and the ratio of the product-level kurtosis over

its average Kurt/K̄ (Panel B). Each observation corresponds to a disaggregate PPI product, the product level is

the 4-digit level of the NACE rev2 classification of sectors. PPI covers the manufacturing sectors. Product fixed

effects are defined at the 2-digit level (24). Robust standard errors are reported in parentheses. *** p<0.01, **

p<0.05, * p<0.1
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Table A.16: OLS Regression Results: Moments of Price Durations (Alvarez et al. 2016)

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes
PANEL A: Producer prices - Constrained model
E(d) (1 + CV (d)2) 2.288*** 1.347* 6.310** 2.428 1.873** 1.261*

(0.830) (0.713) (2.960) (2.824) (0.724) (0.690)

Constant -43.58*** -30.43*** -86.89** -56.01 -46.03*** -38.04***
(10.22) (9.411) (36.10) (35.96) (8.822) (11.00)

R2 0.175 0.553 0.116 0.472 0.162 0.463
PANEL B: Producer prices - Unconstrained model
E(d) 2.529*** 1.474** 6.351** 2.838 2.110*** 1.493**

(0.755) (0.594) (2.676) (2.278) (0.635) (0.601)

CV (d)2 1.742 1.122 6.217 1.702 1.336 0.849
(1.235) (1.124) (4.407) (4.561) (1.067) (1.035)

Constant -42.31*** -29.98*** -86.67** -54.56 -44.77*** -37.22***
(10.88) (10.24) (38.53) (39.07) (9.478) (12.03)

R2 0.179 0.553 0.116 0.472 0.167 0.466
Observations 118 118 118 118 118 118
PANEL C: Consumer prices - Constrained model
E(d) (1 + CV (d)2) 0.923* 2.113*** 2.361 4.645** 0.825** 1.312***

(0.535) (0.661) (1.617) (1.992) (0.353) (0.358)

Constant -27.63*** -30.85*** -44.76** -61.96*** -32.46*** -33.26***
(7.073) (6.484) (21.50) (20.11) (4.812) (3.563)

R2 0.038 0.520 0.034 0.386 0.052 0.696
PANEL D: Consumer prices - Unconstrained model
E(d) 0.684** 1.688*** 2.218** 3.683*** 0.783*** 1.150***

(0.331) (0.523) (1.038) (1.371) (0.264) (0.336)

CV (d)2 2.468 4.033** 3.278 8.981 1.098 2.042*
(1.952) (1.888) (5.957) (5.933) (1.139) (1.078)

Constant -32.84*** -37.64*** -47.86 -77.31** -33.38*** -35.84***
(11.30) (10.00) (35.48) (32.79) (7.110) (5.488)

R2 0.051 0.532 0.035 0.394 0.053 0.699
Observations 219 219 219 219 219 219

Note: This table reports results of OLS regressions relating product-specific CIR
Pj

T (expressed in %) to the

product E(d)
(
1 + CV (d)2

)
where E(d) is the average price duration calculated at the product level and CV (d) is

the coefficient of variation of price durations (Panels A and C), and results of OLS regressions relating

product-specific CIR
Pj

T (expressed in %) to E(d) and CV (d)2 (Panels B and D). Product fixed effects are defined

at the 2-digit level for both CPI and PPI products (i.e. 38 product fixed effects for the CPI, and 24 in the case of

the PPI). Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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SUPPLEMENTARY APPENDIX

Additional figures

Figure B.1: Cross-sector Distribution of Frequency and Kurtosis of Price Changes (CPI-PPI)
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Note: histograms report the distribution of frequency and kurtosis separately for 118 PPI products and 227 CPI
products.
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Figure B.2: Correlation CIRP - Log ratio Kurt
Freq

Note: the figure plots for each of the three FAVAR specifications the product-specific CIR (at the horizon 36
months) and the log of the ratio kurtosis over frequency of price changes. The top panel (red dots) reports results
for PPI products whereas the bottom panel (blue dots) reports results for CPI products.

Measurement Error

This appendix assesses the impact of (one form of) measurement errors on the micro moments of
price adjustment and their ratio Kurt/Freq.

Assume measurement errors are of the following type: for a given store, measurement errors
materialize at some points by extra spurious price changes, and these spurious price changes are
small. Such patterns of error is plausible (as discussed in Alvarez, Le Bihan, and Lippi (2016) ),
both for CPI data because small coding error can stay undetected by the error checking procedures
of the statistical institute, and for scanner data as the price in typically computed as the ratio
of value purchased to quantity sold (and the numerator can vary reflecting e.g. coupons). These
spurious price changes will increase both the measured Kurtosis, as well as the measured Frequency
of price changes - with the size of the bias being a function of the fraction of spurious price changes.
However, as is formally shown below, such measurement errors will leave ratio Kurtosis/Frequency
unchanged. As a result, not only theory indicates that the ratio Kurtosis/Frequency is the relevant
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covariate, but it is also the case that this ratio should be more robust to measurement errors than
each of the moments taken separately.

Formally, let N∆p be the number of “true” price changes per period (i.e. the frequency of price
changes). Assume ∆p, the price changes, have mean zero, variance V ar(∆p) = σ2

∆p and Kurtosis
Kurt(∆p) = m4,∆p/σ

4
∆p, where m4,∆p is the fourth moment of variable ∆p . Let Ne denote the

number of spurious price changes per unit of time. Assume that spurious price changes, denoted
e, have mean zero and variance V ar(e) = σ2

e , and kurtosis Kurt(e) = m4,e/σ
4
e . Aume spurious

and true price changes to be statistically independent. Then the observed (measured) frequency
of price changes will be Ñ = N∆p + Ne. The distribution of the observed price changes, denoted
∆̃p’s , will have mean zero and its Kurtosis will be

Kurt(∆̃p) =
θKurt(∆p)σ4

∆p + (1− θ)Kurt(e)σ4
e(

θσ2
∆p + (1− θ)σ2

e

)2

with θ ≡ N∆p

Ñ
the fraction of “true” price changes. We consider the case of arbitrarily small

measurement errors . From the above it results that limσ2
e→0Kurt(∆̃p) = Kurt(∆p)

θ
. Then we

have limσ2
e→0

Kurt(∆̃p)

Ñ
= Kurt(∆p)

N∆p
. Thus, the ratio Kurtosis over Frequency is unaffected by these

presence of small measurement error.

Further robustness regression results

Robustness: Removing Extreme Values of CIRP , Freq, Kurt or Kurt/Freq

Another robustness exercise consists of checking whether our main results are driven by some
products for which the cumulative response of prices, frequency or kurtosis of price changes, is
either extremely low or extremely high. For that we define 4 sub-samples in which we remove
5% of products corresponding to the 2.5% largest or the 2.5% smallest values for: (i) the CIRP ,
(ii) ratio kurtosis over frequency, (iii) kurtosis of non-zero price changes or (iv) frequency of price
changes.42 We run our baseline regressions on each of these subsamples and results are reported
in tables Table B.1 and Table B.2 in the Appendix.

For PPI products, removing products with extreme values does not alter our baseline conclu-
sions: in most cases, the slope coefficient associated with the ratio Kurt/Freq is positive and
significantly different from zero, and estimated coefficients are quite close to the ones estimated in
our baseline exercise. We find a strongest relationship when we exclude extreme values of kurtosis.
Similarly, in unconstrained regressions, results are fully in line with the ones using the full sample
of products.

For CPI products, results obtained when removing ’extreme’ products are similar with baseline
results and the ratio Kurt/Freq is not statistically different from zero. In the unconstrained
version of the model, kurtosis is positive and significantly different from 0 in most cases but the
estimated parameter associated with frequency is non-significantly different from 0 in several cases.

42For CPI, 10 different products are excluded in each subsample whereas for PPI 6 different products are excluded.
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Table B.1: Regression Results: Outliers - Constrained Model

PRODUCER PRICES CONSUMER PRICES
Identification Cholesky Cholesky High-Freq. IV Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes Yes No Yes
Product FE No No No No No No

PANEL A: CIR
Kurt/Freq 0.120*** 0.224** 0.126*** -0.0159 -0.00518 0.000885

(0.0427) (0.109) (0.0384) (0.0105) (0.0224) (0.00675)

Constant -22.44*** -22.17*** -30.41*** -13.58*** -13.66*** -21.54***
(2.672) (7.196) (2.283) (0.879) (2.771) (0.655)

R2 0.093 0.037 0.110 0.014 0.000 0.000

PANEL B: Ratio
Kurt/Freq 0.193*** 0.339** 0.184*** -0.0244 -0.00930 0.00360

(0.0553) (0.156) (0.0547) (0.0162) (0.0406) (0.0122)

Constant -25.41*** -27.34*** -32.27*** -13.61*** -13.59*** -22.56***
(3.433) (9.998) (3.099) (1.500) (4.569) (1.527)

R2 0.097 0.030 0.113 0.016 0.000 0.000

PANEL C: Kurtosis
Kurt/Freq 0.282*** 0.755** 0.257*** -0.00825 0.0121 0.0103

(0.0886) (0.303) (0.0762) (0.0173) (0.0423) (0.0122)

Constant -31.08*** -51.06*** -36.96*** -16.13*** -19.19*** -23.84***
(5.173) (17.92) (4.323) (2.106) (6.052) (1.693)

R2 0.128 0.080 0.147 0.001 0.000 0.004

PANEL D: Frequency
Kurt/Freq 0.197** 0.619** 0.214*** -0.0155 -0.0165 0.00588

(0.0803) (0.276) (0.0711) (0.0109) (0.0287) (0.00955)

Constant -27.28*** -45.96*** -35.44*** -13.35*** -10.35*** -22.13***
(4.859) (16.89) (4.017) (1.057) (3.286) (1.362)

R2 0.082 0.067 0.133 0.011 0.002 0.002
Observations 112 112 112 213 213 213

Note: this table reports results of OLS regressions (equation (13)) for PPI products relating the product-specific

CIR
Pj

T (expressed in %) to the ratio Kurt/freq. For each of the 4 regressions, we remove products with ”extreme”

values of CIR (Panel A); ratio Kurt/Freq (Panel B), kurtosis (Panel C), frequency of price changes (Panel D).

”Extreme values” are defined as products below the 2.5th percentile or above the 97.5th percentile of the distribution

of each statistic (10 products for CPI and 6 for PPI). Robust standard errors are reported in parentheses. ***

p<0.01, ** p<0.05, * p<0.1
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Table B.2: Regression Results: Outliers - Unconstrained

PRODUCER PRICES CONSUMER PRICES
Identification Cholesky Cholesky High-Freq. IV Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes Yes No Yes
Product FE No No No No No No
PANEL A: CIR
Freq/F̄ -3.486** -5.952** -3.897*** 2.057 -0.762 -1.620

(1.585) (2.970) (1.388) (1.620) (3.695) (1.416)

Kurt/K̄ 2.883 5.554 4.452* 4.727*** 1.712 2.764***
(2.059) (6.260) (2.404) (1.605) (2.590) (0.667)

Constant -16.71*** -12.14 -25.71*** -21.70*** -15.15*** -22.76***
(2.591) (8.174) (2.863) (2.703) (5.147) (1.729)

R2 0.105 0.036 0.133 0.076 0.002 0.086
PANEL B: Ratio
Freq/F̄ -3.932** -6.477* -3.474 -1.832 -12.97 -2.963**

(1.805) (3.471) (2.215) (3.805) (9.849) (1.453)

Kurt/K̄ 7.954** 11.80 6.120* 7.518*** 4.381 5.366***
(3.710) (11.09) (3.289) (1.707) (5.325) (1.532)

Constant -21.49*** -18.70 -27.36*** -21.37*** -6.719 -24.76***
(4.337) (14.04) (3.263)

R2 0.085 0.022 0.080 0.071 0.069 0.076
PANEL C: Kurtosis
Freq/F̄ -7.334** -22.41** -6.206** -7.886*** -26.38*** -5.602***

(3.079) (11.29) (2.820) (2.812) (7.067) (1.302)

Kurt/K̄ 16.25** 47.34** 12.35** 10.49*** 3.434 7.042***
(6.322) (21.13) (4.937) (2.268) (6.538) (2.021)

Constant -27.67*** -42.82** -31.94*** -19.17*** 4.334 -24.19***
(6.068) (20.58) (4.441) (3.835) (9.826) (2.654)

R2 0.235 0.185 0.221 0.254 0.309 0.212
PANEL D: Frequency
Freq/F̄ -9.007* -35.41** -10.30*** 3.269* 4.277 -0.819

(4.644) (15.89) (3.225) (1.684) (3.852) (1.614)

Kurt/K̄ 7.728* 19.20 6.470** 4.608*** 2.669 3.468***
(3.957) (13.74) (3.000) (1.624) (3.185) (1.116)

Constant -18.22*** -5.917 -23.19*** -22.38*** -18.41*** -24.39***
(4.688) (16.94) (3.175) (2.700) (5.574) (1.709)

R2 0.213 0.253 0.360 0.080 0.009 0.037
Observations 112 112 112 213 213 213

Note: This table reports results of OLS regressions (equation (14)) relating the product-specific CIR
Pj

T (expressed

in %) to the ratio of the product-level frequency over its average Freq/F̄ and the ratio of the product-level kurtosis

over its average Kurt/K̄. For each of the 4 regressions, we remove products with ”extreme” values of CIR (Panel

A); ratio Kurt/Freq (Panel B), kurtosis (Panel C), frequency of price changes (Panel D). ”Extreme values” are

defined as products below the 2.5th percentile or above the 97.5th percentile of the distribution of each statistic.

Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Robustness: A FAVAR with only PPI Sectoral Data

In this exercise, we carry out the analysis removing the CPI sectoral data from the FAVAR -
and thus producing cross-sectoral regressions only for PPI. The motivation for carrying such an
exercise is related to concerns with the CPI data: even if one restricts interest to the cross sectoral-
regressions related to PPI data only, they are still potentially affected by the properties of CPI
data, since CPI data will influence the computation of the factors and hence of sectoral IRFs for
PPI as well.

We carried out the analysis with PPI only both under the standard identification case, as well
as in the case using the German 2-year bond yields, with HFI identification. Results are reported
in Appendix Table B.3 and are in all cases highly similar to the ones obtained in our baseline
regressions.

Table B.3: Regression Results: FAVAR PPI only - Euribor vs German 2-year Bond

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: Constrained model
Kurt/Freq 0.101*** 0.0543** 0.711** 0.321 0.340*** 0.192**

(0.0288) (0.0223) (0.326) (0.253) (0.0939) (0.0744)

Constant -22.81*** -17.88*** -49.38** -28.81** -38.40*** -23.70***
(1.749) (1.686) (21.19) (12.33) (5.511) (4.714)

R2 0.143 0.497 0.050 0.404 0.160 0.508
PANEL B: Unconstrained model
Freq/F̄ -3.016** -1.427 -29.53** -14.23 -9.948*** -4.590

(1.190) (1.180) (14.07) (14.28) (3.597) (3.451)

Kurt/K̄ 4.767*** 3.528** 39.56** 36.79* 12.50*** 7.041
(1.530) (1.441) (19.93) (18.89) (4.729) (4.505)

Constant -20.14*** -17.93*** -28.42 -39.48** -26.14*** -19.35***
(1.650) (1.501) (22.34) (18.51) (5.159) (4.402)

R2 0.243 0.517 0.156 0.431 0.241 0.512
Observations 118 118 118 118 118 118

Note: This table reports OLS results of the constrained model (equation (13)) relating product-specific CIR
Pj

T

(expressed in %) to the ratio Kurt/freq and OLS results of the unconstrained model (equation (14)) relating

product-specific CIR
Pj

T (expressed in %) to the ratio of the product-level frequency over its average Freq/F̄ and

the ratio of the product-level kurtosis over its average Kurt/K̄. CIR are here calculated from a FAVAR model

estimated using only PPI product-level series using both the Euribor (with no instrument) and the 2-year German

bond rate as a policy rate, in this latter model, the model is identified using a high frequency instrument method.

Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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More regression results using CIRY

Table B.4: Regression Results - CIR of Output - PPI products - Placebo Specification

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

Kurt/Freq -0.911** -0.818* -1.020 -1.102 0.0788 -0.0335
(0.430) (0.472) (1.483) (1.492) (0.358) (0.504)

Mean 18.22*** 6.443 15.22 -4.582 6.720 7.794
(6.250) (8.149) (20.11) (24.96) (10.71) (10.57)

Skew. -12.78 -11.62 -61.64 -39.11 8.915 4.278
(18.58) (24.51) (54.73) (75.98) (21.30) (29.96)

SD -6.547 -11.17* 8.853 3.640 6.941 11.74
(6.643) (6.635) (17.14) (20.39) (6.846) (8.779)

Constant 9.957 96.99** -48.58 153.6 -3.397 94.17**
(33.86) (37.43) (96.34) (107.6) (33.29) (46.92)

Observations 156 156 156 156 156 156
R2 0.089 0.267 0.020 0.204 0.010 0.202

Note: this table reports results of OLS regressions testing equation (5) where the dependent variable is the product-

specific CIR
Yj

T (expressed in %) and the right-hand-side variable are the ratio Kurt/freq but also three other

moments of the product-specific price change distribution: the average price change Mean, the skewness of price

changes Skewness, and the standard deviation of price changes StandardDev.. Each observation corresponds to

a disaggregate PPI product, the product level is the 4-digit level of the NACE rev2 classification of sectors. PPI

covers the manufacturing sectors. Product fixed effects are defined at the 2-digit level (24). Robust standard errors

are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table B.5: Regression Results - CIR of Output - PPI products - Placebo Specification

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

Freq/F̄ 10.72*** 9.015** 6.106 5.540 1.345 4.557
(3.505) (3.905) (9.814) (10.88) (4.456) (5.459)

Kurt/K̄ -52.46 -66.77** -12.79 -2.117 0.430 -20.38
(32.38) (30.94) (70.01) (83.14) (33.26) (46.44)

Mean 12.66* -0.951 7.906 -15.79 7.731 8.732
(6.918) (11.04) (22.45) (35.14) (11.26) (11.73)

Skew. 1.825 -9.391 -33.73 -15.11 5.394 -0.962
(14.45) (16.55) (35.06) (53.03) (15.99) (23.20)

SD -15.67 -23.19** 9.957 6.587 7.020 8.063
(12.46) (11.35) (29.62) (33.17) (13.57) (16.76)

Constant 61.56 184.6** -75.33 116.6 -3.914 122.6
(82.37) (81.05) (191.5) (222.3) (89.80) (114.2)

Observations 156 156 156 156 156 156
R2 0.077 0.275 0.010 0.197 0.010 0.207

Note: this table reports results of OLS regressions testing equation (5) where the dependent variable is the product-

specific CIR
Yj

T (expressed in %) and the right-hand-side variable are the ratio of the product-level frequency over

its average Freq/F̄ and the ratio of the product-level kurtosis over its average Kurt/K̄ but also three other

moments of the product-specific price change distribution: the average price change Mean, the skewness of price

changes Skewness, and the standard deviation of price changes StandardDev.. Each observation corresponds to

a disaggregate PPI product, the product level is the 4-digit level of the NACE rev2 classification of sectors. PPI

covers the manufacturing sectors. Product fixed effects are defined at the 2-digit level (24). Robust standard errors

are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table B.6: Regression Results - CIR of Output - PPI products - Excluding 10% of sectors with
highest positive CIRY

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: Constrained model

Kurt/Freq -0.579** -0.655** -0.557 -1.016 -0.269** -0.459***
(0.279) (0.302) (0.933) (0.927) (0.125) (0.154)

Constant -28.28*** 23.54 -39.89 161.2*** 25.50*** 5.644
(9.874) (15.09) (31.73) (46.25) (7.122) (8.758)

R2 0.107 0.350 0.014 0.314 0.022 0.198

PANEL B: Unconstrained model

Freq/F̄ 11.71*** 9.881*** 6.674 6.570 5.532 8.220*
(2.846) (3.152) (9.602) (8.429) (3.451) (4.270)

Kurt/K̄ -1.418 -2.098 8.333 -31.28 -13.72 -29.25**
(11.75) (16.17) (29.30) (45.28) (9.742) (14.50)

Constant -61.27*** -11.16 -77.11*** 132.2*** 23.00* 11.58
(11.67) (12.15) (26.67) (34.02) (12.28) (17.91)

R2 0.064 0.301 0.003 0.292 0.023 0.204
Observations 140 140 140 140 140 140

Note: this table reports results of OLS regressions testing equation (5) where the dependent variable is the

product-specific CIR
Yj

T (expressed in %) and the right-hand-side variable are the ratio Kurt/freq (Panel A) or

the ratio of the product-level frequency over its average Freq/F̄ and the ratio of the product-level kurtosis over

its average Kurt/K̄ (Panel B). Each observation corresponds to a disaggregate PPI product, the product level is

the 4-digit level of the NACE rev2 classification of sectors. PPI covers the manufacturing sectors. Product fixed

effects are defined at the 2-digit level (24). We have excluded 10% of sectors with the highest positive CIRY in

each specification. Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Robustness: regression results using a different HP filter value λ = 1M

Table B.7: OLS Regression Results : “Constrained” Specification - HP filter λ = 106

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: PRODUCER PRICES

Kurt/Freq 0.216*** 0.124** 0.539** 0.234 0.189*** 0.135**
(0.0726) (0.0524) (0.233) (0.165) (0.0646) (0.0555)

Constant -28.96*** -19.78*** -43.04*** -33.91*** -34.08*** -27.29***
(4.386) (2.906) (14.66) (6.844) (3.834) (6.984)

Observations 118 118 118 118 118 118
R2 0.114 0.561 0.064 0.478 0.110 0.452

PANEL B: CONSUMER PRICES

Kurt/Freq 0.00326 0.0438*** 0.0268 0.0915** 0.0125 0.0328***
(0.0154) (0.0153) (0.0397) (0.0432) (0.0107) (0.0118)

Constant -17.59*** -14.36*** -19.71*** -21.85*** -23.78*** -21.61***
(1.973) (1.058) (5.768) (4.445) (1.582) (0.768)

Observations 223 223 223 223 223 223
R2 0.000 0.437 0.002 0.347 0.006 0.649

Note: this table reports results of OLS regressions (equation (13)) where the dependent variable is the

product-specific CIR
Pj

T (calculated for the horizon T=36 months, and expressed in %) and the right-hand-side

variable is the ratio Kurt/freq. Each observation corresponds to a disaggregate CPI or PPI product. For CPI,

the level of disaggregation is 5 digit-level of the ECOICOP classification (ie. ‘01.1.1.1’) whereas for PPI, the

product level is the 4-digit level of the NACE rev2 classification of sectors. PPI covers the manufacturing sectors

whereas CPI covers about 60% of the whole French CPI (main products excluded are rents, cars, utilities like

electricity). Product fixed effects are defined at the 2-digit level for both CPI and PPI products (i.e. 38 product

fixed effects for the CPI, and 24 in the case of the PPI). Robust standard errors are reported in parentheses. ***

p<0.01, ** p<0.05, * p<0.1
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Table B.8: Regression Results - “Unconstrained” Specification - HP filter λ = 106

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: PRODUCER PRICES
Freq/F̄ -7.431** -3.552 -21.36* -7.623 -6.241** -3.610

(3.099) (2.343) (10.90) (9.512) (2.827) (2.575)

Kurt/K̄ 8.708** 5.463 23.33* 20.11 7.065** 3.930
(4.008) (3.477) (13.56) (12.61) (3.300) (3.305)

Constant -20.81*** -17.36*** -21.50 -37.54*** -26.68*** -23.04***
(4.132) (3.422) (14.29) (12.42) (3.234) (6.445)

Observations 118 118 118 118 118 118
R2 0.233 0.576 0.170 0.492 0.205 0.462

PANEL B: CONSUMER PRICES
Freq/F̄ -8.079*** -12.49*** -23.61*** -30.74*** -4.989*** -6.636***

(2.858) (1.599) (7.484) (5.989) (1.409) (0.944)

Kurt/K̄ 4.706*** 2.708* 1.931 -3.643 3.541*** 2.687**
(1.621) (1.456) (3.671) (3.461) (1.161) (1.076)

Constant -13.93*** 3.967 4.380 31.97*** -21.21*** -12.69***
(3.600) (3.112) (8.504) (10.71) (2.068) (1.848)

Observations 223 223 223 223 223 223
R2 0.247 0.726 0.256 0.582 0.176 0.793

Note: this table reports results of OLS regressions (equation (14)) where the dependent variable is the product-

specific CIR
Pj

T (calculated for the horizon T=36 months, and expressed in %) and the right-hand-side variables are

the ratio of the product-level frequency over its average Freq/F̄ and the ratio of the product-level kurtosis over

its average Kurt/K̄. Product fixed effects are defined at the 2-digit level for both CPI and PPI products (i.e. 38

product fixed effects for the CPI, and 24 in the case of the PPI). Robust standard errors are reported in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table B.9: Regression Results - Placebo Specification - HP filter λ = 106

Identification Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes
Product FE No Yes No Yes No Yes

PANEL A: PRODUCER PRICES
Kurt/Freq 0.201** 0.100 0.506* 0.209 0.188** 0.0987

(0.0919) (0.0716) (0.294) (0.254) (0.0768) (0.0666)

Mean -1.381 -0.782 -10.56* -4.271 -1.262 1.273
(1.735) (1.592) (6.291) (7.035) (1.522) (1.677)

Skewness -3.019 -5.004 -17.24 -7.925 -2.207 -3.327
(3.933) (4.022) (15.52) (18.72) (2.718) (3.625)

SD -0.951 0.976 -5.486 -3.173 -0.182 2.197
(2.436) (2.084) (8.011) (7.892) (2.011) (1.728)

Constant -24.10*** -24.27** -15.18 -16.60 -32.89*** -38.56***
(9.063) (11.01) (28.38) (40.53) (7.834) (11.33)

Observations 118 118 118 118 118 118
R2 0.119 0.567 0.082 0.481 0.113 0.465

PANEL B: CONSUMER PRICES
Kurt/Freq -0.00992 0.0290 0.0921 0.160*** 0.0116 0.0299**

(0.0233) (0.0222) (0.0563) (0.0604) (0.0140) (0.0146)

Mean 1.224** 1.675** -1.157 0.376 0.132 0.759*
(0.588) (0.710) (1.884) (1.884) (0.438) (0.427)

Skewness 6.449** 3.852 18.69** 5.153 4.161** 3.868**
(2.717) (2.933) (8.538) (9.313) (1.723) (1.796)

SD -0.527 0.240 3.290* 5.199** -0.528 0.251
(0.732) (0.868) (1.880) (2.166) (0.532) (0.517)

Constant -12.21* -16.06** -44.27** -62.63*** -18.77*** -23.17***
(7.268) (6.776) (18.76) (18.11) (4.394) (4.001)

Observations 223 223 223 223 223 223
R2 0.027 0.452 0.056 0.381 0.027 0.658

Note: this table reports results of OLS regressions (equation (13)) where the dependent variable is the product-

specific CIR
Pj

T (calculated for the horizon T=36 months and expressed in %) and the right-hand-side variables

include the product-specific ratio Kurt/freq but also three other moments of the product-specific price change

distribution: the average price change Mean, the skewness of price changes Skewness, and the standard deviation

of price changes StandardDev.. Product fixed effects are defined at the 2-digit level for both CPI and PPI products

(i.e. 38 product fixed effects for the CPI, and 24 in the case of the PPI). Robust standard errors are reported in

parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Kurtosis Measurement with Unobserved Heterogeneity

The measure of Kurtosis is particularly sensitive to unobserved heterogeneity. Measured kurtosis is
in particular known to suffer from an upward bias when a sample is composed of two (or more) sub-
populations with different variances. To investigate the robustness of our results with respect to
such a concern, we use an alternative measure of kurtosis derived along the lines of Alvarez, Lippi,
and Oskolkov (2022). The assumption underlying this correction, is that within a given product
category, there are several varieties (indexed by i = 1, ..., I) that are pooled. For instance, one
could have various brands of soda, in the case the brand of soda is not collected by the statistical
office, or not disclosed to the researcher. At a given date t, the price change for all varieties is
driven by a common factor ∆p̃t, but the variance differs across varieties, according to a scaling
factor bi.

∆pit = bi∆p̃t for i ∈ I and t ∈ T (i)

where T (i) is the set of adjustment instances for variety i. Under the assumption that ∆p̃t is
serially uncorrelated, and some other general assumptions, Alvarez, Lippi, and Oskolkov (2022)
show that the following property then holds:

Kurt(∆p̃t) = Kurt(∆pit)
E[(∆p2

it)]
2

E[(∆p2
it)(∆p

2
is)]

for t 6= s

or equivalently

Kurt(∆p̃t) =
Kurt(∆pit)

1 + corr(∆p2
it,∆p

2
is)CV (∆p2

it)CV (∆p2
is)

for t 6= s

where CV(.) denotes the coefficient of variation and corr(.,.) the correlation coefficient.
We use these equations to compute a measure of kurtosis robust to unobserved heterogeneity.

In practice, we want to use information from several possible lags (the s’s as different from t),
rather than picking up a single particular lag s.

To compute the covariance terms in the expression above we as use an estimator of E =
E[(∆p2

it)(∆p
2
is)] the following expression:

E = (1/#Terms)
∑

t,s∈T (i),t6=s

(∆pit)
2(∆pis)

2 (42)

In practice, we consider the first K lags of squared price changes. So, the numerator of the
formula (42) above is computed as:

S = 2 ∗ [
T∑
t=2

(∆pt)
2(∆pt−1)2 +

T∑
t=3

(∆pt)
2(∆pt−2)2 + ...+

T∑
t=K+1

(∆pt)
2(∆pt−K)2] (43)

Denotig by NN the number of terms in equation ( 43), then #Terms = 2 ∗NN , where:

NN = (T − 1) + (T − 2) + ...+ (T − k) = T (T − 1)/2− (T −K − 1) ∗ (T −K)/2 (44)

So when K = T − 1 , #Terms = 2 ∗ T (T − 1)/2 = T (T − 1) Then we recover

E =
S

T (T − 1)

xiii



Table B.10: Regression Results: Kurtosis Measurement - Constrained model

PRODUCER PRICES CONSUMER PRICES
Identification Cholesky Cholesky High-Freq. IV Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes Yes No Yes
Product FE No No No No No No

PANEL A: Outlier threshold - small price changes
Kurt/Freq 0.184*** 0.468** 0.166*** 0.000529 0.0352 0.0150

(0.0695) (0.226) (0.0615) (0.0148) (0.0399) (0.0106)

Constant -26.48*** -38.12*** -32.65*** -16.64*** -19.56*** -23.90***
(4.153) (14.05) (3.506) (1.915) (5.654) (1.555)

R2 0.082 0.046 0.092 0.000 0.004 0.008
PANEL C: Outlier threshold - large price changes
Kurt/Freq 0.0912* 0.233 0.0843* 0.00220 0.0259 0.0129

(0.0499) (0.146) (0.0466) (0.0113) (0.0311) (0.00812)

Constant -25.07*** -34.59** -31.51*** -16.87*** -19.47*** -24.08***
(4.319) (13.84) (3.802) (1.901) (5.647) (1.540)

R2 0.063 0.036 0.074 0.000 0.003 0.010
Observations 118 118 118 223 223 223

Note: This table reports OLS results of the constrained model (equation (13)) for PPI products relating product-

specific CIR
Pj

T (expressed in %) to the ratio Kurt/freq In Panel A, we have modified the thresholds defining very

small price changes for the calculation of kurtosis: we have removed all price changes below 0.5% in absolute values

(instead 0.1% in our baseline). In Panel B, we have modified thresholds defining very large price changes for the

calculation of kurtosis (25% for instead of 15% in the baseline). Robust standard errors are reported in parentheses.

*** p<0.01, ** p<0.05, * p<0.1

xiv



Table B.11: Regression Results: Kurtosis Measurement - Unconstrained model

PRODUCER PRICES CONSUMER PRICES
Identification Cholesky Cholesky High-Freq. IV Cholesky Cholesky High-Freq. IV
Long-run Restriction Yes No Yes Yes No Yes
Product FE No No No No No No

PANEL A: Outlier threshold - small price changes
Freq/F̄ -7.146** -21.84* -6.046** -7.279** -23.86*** -5.020***

(3.161) (11.58) (2.814) (2.883) (7.591) (1.429)

Kurt/K̄ 6.486* 15.39 5.666* 4.166** 1.075 3.089***
(3.813) (11.96) (3.207) (1.644) (3.720) (1.103)

Constant -18.29*** -12.51 -25.48*** -13.48*** 6.255 -20.68***
(4.610) (15.25) (3.660) (3.734) (8.946) (2.125)

R2 0.198 0.154 0.197 0.211 0.260 0.173
PANEL B: Outlier threshold - large price changes
Freq/F̄ -7.427** -22.52* -6.288** -7.275** -23.57*** -5.003***

(3.185) (11.64) (2.868) (2.806) (7.527) (1.398)

Kurt/K̄ 4.581 13.43 3.335 4.284** 2.538 3.138***
(3.480) (11.33) (2.822) (1.869) (2.796) (1.187)

Constant -16.11*** -9.870 -22.91*** -13.63*** 4.409 -20.79***
(3.692) (12.49) (2.828) (3.498) (7.844) (2.002)

R2 0.197 0.157 0.191 0.218 0.258 0.178
Observations 118 118 118 223 223 223

Note: This table reports OLS results of the unconstrained model (equation (14)) relating product-specific CIR
Pj

T

(expressed in %) to the ratio of the product-level frequency over its average Freq/F̄ and the ratio of the product-

level kurtosis over its average Kurt/K̄. In Panel A, we have modified the thresholds defining very small price

changes for the calculation of kurtosis: we have removed all price changes below 0.5% in absolute values (instead

0.1% in our baseline). In Panel B, we have modified thresholds defining very large price changes for the calculation

of kurtosis (25% for instead of 15% in the baseline). Robust standard errors are reported in parentheses. ***

p<0.01, ** p<0.05, * p<0.1
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